ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.06068
  4. Cited By
The signature of robot action success in EEG signals of a human
  observer: Decoding and visualization using deep convolutional neural networks

The signature of robot action success in EEG signals of a human observer: Decoding and visualization using deep convolutional neural networks

16 November 2017
Joos Behncke
R. Schirrmeister
Wolfram Burgard
T. Ball
ArXivPDFHTML

Papers citing "The signature of robot action success in EEG signals of a human observer: Decoding and visualization using deep convolutional neural networks"

6 / 6 papers shown
Title
A Survey on Deep Learning-based Non-Invasive Brain Signals:Recent
  Advances and New Frontiers
A Survey on Deep Learning-based Non-Invasive Brain Signals:Recent Advances and New Frontiers
Xiang Zhang
Lina Yao
Xianzhi Wang
Jessica J. M. Monaghan
David Mcalpine
Yu Zhang
3DV
33
140
0
10 May 2019
Deep learning-based electroencephalography analysis: a systematic review
Deep learning-based electroencephalography analysis: a systematic review
Yannick Roy
Hubert J. Banville
Isabela Albuquerque
Alexandre Gramfort
T. Falk
J. Faubert
25
936
0
16 Jan 2019
The role of robot design in decoding error-related information from EEG
  signals of a human observer
The role of robot design in decoding error-related information from EEG signals of a human observer
Joos Behncke
R. Schirrmeister
Wolfram Burgard
T. Ball
11
2
0
04 Jul 2018
Cross-paradigm pretraining of convolutional networks improves
  intracranial EEG decoding
Cross-paradigm pretraining of convolutional networks improves intracranial EEG decoding
Joos Behncke
R. Schirrmeister
M. Völker
Jiří Hammer
Petr Marusič
A. Schulze-Bonhage
Wolfram Burgard
T. Ball
14
11
0
20 Jun 2018
A large-scale evaluation framework for EEG deep learning architectures
A large-scale evaluation framework for EEG deep learning architectures
Felix A. Heilmeyer
R. Schirrmeister
L. Fiederer
M. Völker
Joos Behncke
T. Ball
17
17
0
18 Jun 2018
Intracranial Error Detection via Deep Learning
Intracranial Error Detection via Deep Learning
M. Völker
Jiří Hammer
R. Schirrmeister
Joos Behncke
L. Fiederer
A. Schulze-Bonhage
Petr Marusič
Wolfram Burgard
T. Ball
8
10
0
04 May 2018
1