ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.08936
78
59
v1v2 (latest)

Causal Generative Neural Networks

24 November 2017
Olivier Goudet
Diviyan Kalainathan
Philippe Caillou
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
    BDLCMLDRL
ArXiv (abs)PDFHTML
Abstract

We introduce CGNN, a framework to learn functional causal models as generative neural networks. These networks are trained using backpropagation to minimize the maximum mean discrepancy to the observed data. Unlike previous approaches, CGNN leverages both conditional independences and distributional asymmetries to seamlessly discover bivariate and multivariate causal structures, with or without hidden variables. CGNN does not only estimate the causal structure, but a full and differentiable generative model of the data. Throughout an extensive variety of experiments, we illustrate the competitive results of CGNN w.r.t state-of-the-art alternatives in observational causal discovery on both simulated and real data, in the tasks of cause-effect inference, v-structure identification, and multivariate causal discovery.

View on arXiv
Comments on this paper