ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00427
  4. Cited By
Unsupervised Classification of PolSAR Data Using a Scattering Similarity
  Measure Derived from a Geodesic Distance

Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived from a Geodesic Distance

1 December 2017
D. Ratha
A. Bhattacharya
A. Frery
ArXiv (abs)PDFHTML

Papers citing "Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived from a Geodesic Distance"

4 / 4 papers shown
Title
Explainable, Physics Aware, Trustworthy AI Paradigm Shift for Synthetic
  Aperture Radar
Explainable, Physics Aware, Trustworthy AI Paradigm Shift for Synthetic Aperture Radar
Mihai Datcu
Zhongling Huang
Andrei Anghel
Juanping Zhao
R. Cacoveanu
64
0
0
09 Jan 2023
Self-supervised remote sensing feature learning: Learning Paradigms,
  Challenges, and Future Works
Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works
Chao Tao
Ji Qi
Mingning Guo
Qing Zhu
Haifeng Li
SSL
104
59
0
15 Nov 2022
A PolSAR Scattering Power Factorization Framework and Novel
  Roll-Invariant Parameters Based Unsupervised Classification Scheme Using a
  Geodesic Distance
A PolSAR Scattering Power Factorization Framework and Novel Roll-Invariant Parameters Based Unsupervised Classification Scheme Using a Geodesic Distance
D. Ratha
E. Pottier
A. Bhattacharya
A. Frery
23
46
0
27 Jun 2019
Region-Based Classification of PolSAR Data Using Radial Basis Kernel
  Functions With Stochastic Distances
Region-Based Classification of PolSAR Data Using Radial Basis Kernel Functions With Stochastic Distances
R. Negri
A. Frery
W. B. Silva
T. Mendes
L. Dutra
15
12
0
07 May 2018
1