ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00754
  4. Cited By
Universal discrete-time reservoir computers with stochastic inputs and
  linear readouts using non-homogeneous state-affine systems
v1v2v3 (latest)

Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems

3 December 2017
Lyudmila Grigoryeva
Juan-Pablo Ortega
ArXiv (abs)PDFHTML

Papers citing "Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems"

39 / 39 papers shown
ResCP: Reservoir Conformal Prediction for Time Series Forecasting
ResCP: Reservoir Conformal Prediction for Time Series Forecasting
Roberto Neglia
Andrea Cini
Michael M. Bronstein
F. Bianchi
AI4TS
231
0
0
06 Oct 2025
A Solvable Molecular Switch Model for Stable Temporal Information Processing
A Solvable Molecular Switch Model for Stable Temporal Information Processing
H. I. Nurdin
C. A. Nijhuis
118
0
0
21 Aug 2025
Stochastic dynamics learning with state-space systems
Stochastic dynamics learning with state-space systems
Juan-Pablo Ortega
Florian Rossmannek
150
2
0
11 Aug 2025
State-space systems as dynamic generative models
State-space systems as dynamic generative modelsProceedings of the Royal Society A (Proc. R. Soc. A), 2024
Juan-Pablo Ortega
Florian Rossmannek
374
4
0
13 Mar 2025
RandNet-Parareal: a time-parallel PDE solver using Random Neural
  Networks
RandNet-Parareal: a time-parallel PDE solver using Random Neural NetworksNeural Information Processing Systems (NeurIPS), 2024
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
268
5
0
09 Nov 2024
Universality of Real Minimal Complexity Reservoir
Universality of Real Minimal Complexity ReservoirAAAI Conference on Artificial Intelligence (AAAI), 2024
Robert Simon Fong
Boyu Li
Peter Tiňo
139
4
0
15 Aug 2024
Fading memory and the convolution theorem
Fading memory and the convolution theoremIEEE Transactions on Automatic Control (TAC), 2024
Juan-Pablo Ortega
Florian Rossmannek
415
6
0
14 Aug 2024
Universal randomised signatures for generative time series modelling
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
254
7
0
14 Jun 2024
Stochastic Reservoir Computers
Stochastic Reservoir Computers
Peter J. Ehlers
H. Nurdin
Daniel Soh
306
10
0
20 May 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of
  Experts
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
509
2
0
05 Feb 2024
Refined Kolmogorov Complexity of Analog, Evolving and Stochastic
  Recurrent Neural Networks
Refined Kolmogorov Complexity of Analog, Evolving and Stochastic Recurrent Neural Networks
Jérémie Cabessa
Y. Strozecki
116
2
0
29 Sep 2023
Gated recurrent neural networks discover attention
Gated recurrent neural networks discover attention
Nicolas Zucchet
Seijin Kobayashi
Yassir Akram
J. Oswald
Maxime Larcher
Angelika Steger
João Sacramento
214
9
0
04 Sep 2023
Simple Cycle Reservoirs are Universal
Simple Cycle Reservoirs are UniversalJournal of machine learning research (JMLR), 2023
Boyu Li
Robert Simon Fong
Peter Tivno
215
11
0
21 Aug 2023
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirsIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023
Lukas Gonon
A. Jacquier
305
21
0
24 Jul 2023
Infinite-dimensional reservoir computing
Infinite-dimensional reservoir computingNeural Networks (Neural Netw.), 2023
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
274
11
0
02 Apr 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
A Brief Survey on the Approximation Theory for Sequence ModellingJournal of Machine Learning (JML), 2023
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
260
14
0
27 Feb 2023
Reservoir kernels and Volterra series
Reservoir kernels and Volterra series
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
280
10
0
30 Dec 2022
Universal Time-Uniform Trajectory Approximation for Random Dynamical
  Systems with Recurrent Neural Networks
Universal Time-Uniform Trajectory Approximation for Random Dynamical Systems with Recurrent Neural Networks
A. Bishop
182
1
0
15 Nov 2022
Transport in reservoir computing
Transport in reservoir computing
G. Manjunath
Juan-Pablo Ortega
169
7
0
16 Sep 2022
Universality and approximation bounds for echo state networks with
  random weights
Universality and approximation bounds for echo state networks with random weightsIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022
Zhen Li
Yunfei Yang
256
8
0
12 Jun 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)TransformerMathematical Finance (Math. Finance), 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
421
28
0
31 Jan 2022
Interpretable Design of Reservoir Computing Networks using Realization
  Theory
Interpretable Design of Reservoir Computing Networks using Realization Theory
Wei Miao
Vignesh Narayanan
Jr-Shin Li
179
6
0
13 Dec 2021
Universal Approximation Under Constraints is Possible with Transformers
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
305
32
0
07 Oct 2021
Error Bounds of the Invariant Statistics in Machine Learning of Ergodic
  Itô Diffusions
Error Bounds of the Invariant Statistics in Machine Learning of Ergodic Itô Diffusions
He Zhang
J. Harlim
Xiantao Li
368
8
0
21 May 2021
Reservoir Computers Modal Decomposition and Optimization
Reservoir Computers Modal Decomposition and Optimization
Chad Nathe
Enrico Del Frate
Thomas L. Carroll
L. Pecora
A. Shirin
F. Sorrentino
72
1
0
13 Jan 2021
Fading memory echo state networks are universal
Fading memory echo state networks are universal
Lukas Gonon
Juan-Pablo Ortega
220
68
0
22 Oct 2020
Discrete-time signatures and randomness in reservoir computing
Discrete-time signatures and randomness in reservoir computingIEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Christa Cuchiero
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
Josef Teichmann
159
53
0
17 Sep 2020
Dimension reduction in recurrent networks by canonicalization
Dimension reduction in recurrent networks by canonicalizationThe Journal of Geometric Mechanics (J. Geom. Mech.), 2020
Lyudmila Grigoryeva
Juan-Pablo Ortega
196
23
0
23 Jul 2020
Memory and forecasting capacities of nonlinear recurrent networks
Memory and forecasting capacities of nonlinear recurrent networks
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
AI4TS
295
28
0
22 Apr 2020
Approximation Bounds for Random Neural Networks and Reservoir Systems
Approximation Bounds for Random Neural Networks and Reservoir SystemsThe Annals of Applied Probability (Ann. Appl. Probab.), 2020
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
249
79
0
14 Feb 2020
Temporal Information Processing on Noisy Quantum Computers
Temporal Information Processing on Noisy Quantum ComputersPhysical Review Applied (PR Applied), 2020
Jiayin Chen
H. Nurdin
N. Yamamoto
188
108
0
26 Jan 2020
Risk bounds for reservoir computing
Risk bounds for reservoir computing
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
234
46
0
30 Oct 2019
Adaptive Anomaly Detection in Chaotic Time Series with a Spatially Aware
  Echo State Network
Adaptive Anomaly Detection in Chaotic Time Series with a Spatially Aware Echo State Network
Niklas Heim
J. Avery
69
20
0
02 Sep 2019
Dynamical Systems as Temporal Feature Spaces
Dynamical Systems as Temporal Feature SpacesJournal of machine learning research (JMLR), 2019
Peter Tiño
326
26
0
15 Jul 2019
Differentiable reservoir computing
Differentiable reservoir computing
Lyudmila Grigoryeva
Juan-Pablo Ortega
262
46
0
16 Feb 2019
Learning Nonlinear Input-Output Maps with Dissipative Quantum Systems
Learning Nonlinear Input-Output Maps with Dissipative Quantum Systems
Jiayin Chen
H. Nurdin
206
55
0
07 Jan 2019
Reservoir Computing Universality With Stochastic Inputs
Reservoir Computing Universality With Stochastic InputsIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
Lukas Gonon
Juan-Pablo Ortega
253
124
0
07 Jul 2018
Echo state networks are universal
Echo state networks are universal
Lyudmila Grigoryeva
Juan-Pablo Ortega
322
266
0
03 Jun 2018
Using a reservoir computer to learn chaotic attractors, with
  applications to chaos synchronisation and cryptography
Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronisation and cryptography
P. Antonik
Marvyn Gulina
J. Pauwels
Serge Massar
159
83
0
08 Feb 2018
1