ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.01026
  4. Cited By
Wasserstein Divergence for GANs

Wasserstein Divergence for GANs

4 December 2017
Jiqing Wu
Zhiwu Huang
Janine Thoma
Dinesh Acharya
Luc Van Gool
ArXivPDFHTML

Papers citing "Wasserstein Divergence for GANs"

16 / 16 papers shown
Title
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance
Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance
Wenhao Sun
Benlei Cui
Xue-mei Dong
Jingqun Tang
Yi Liu
DiffM
117
12
0
17 Dec 2024
VFLGAN: Vertical Federated Learning-based Generative Adversarial Network
  for Vertically Partitioned Data Publication
VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication
Xun Yuan
Yang Yang
P. Gope
A. Pasikhani
Biplab Sikdar
27
2
0
15 Apr 2024
Warfare:Breaking the Watermark Protection of AI-Generated Content
Warfare:Breaking the Watermark Protection of AI-Generated Content
Guanlin Li
Yifei Chen
Jie M. Zhang
Shangwei Guo
Shangwei Guo
Tianwei Zhang
Jiwei Li
Tianwei Zhang
WIGM
58
3
0
27 Sep 2023
On Deep Learning in Password Guessing, a Survey
On Deep Learning in Password Guessing, a Survey
Fang Yu
AAML
19
3
0
22 Aug 2022
Manifold-preserved GANs
Manifold-preserved GANs
Haozhe Liu
Hanbang Liang
Xianxu Hou
Haoqian Wu
Feng Liu
Linlin Shen
41
5
0
18 Sep 2021
Gradient Normalization for Generative Adversarial Networks
Gradient Normalization for Generative Adversarial Networks
Yi-Lun Wu
Hong-Han Shuai
Zhi Rui Tam
H. Chiu
GAN
19
63
0
06 Sep 2021
Generative models with kernel distance in data space
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
P. Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
11
11
0
15 Sep 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
Can adversarial training learn image captioning ?
Can adversarial training learn image captioning ?
Jean-Benoit Delbrouck
Bastien Vanderplaetse
Stéphane Dupont
GAN
VLM
31
1
0
31 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
14
25
0
09 Oct 2019
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
D. Paudel
Luc Van Gool
DiffM
22
124
0
10 Apr 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
24
537
0
10 Mar 2019
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
(q,p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs
Anton Mallasto
J. Frellsen
Wouter Boomsma
Aasa Feragen
9
15
0
10 Feb 2019
Collaborative Sampling in Generative Adversarial Networks
Collaborative Sampling in Generative Adversarial Networks
Yuejiang Liu
Parth Kothari
Alexandre Alahi
TTA
26
16
0
02 Feb 2019
On Catastrophic Forgetting and Mode Collapse in Generative Adversarial
  Networks
On Catastrophic Forgetting and Mode Collapse in Generative Adversarial Networks
Hoang Thanh-Tung
T. Tran
GAN
13
58
0
11 Jul 2018
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
229
3,190
0
30 Oct 2016
1