ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.01802
70
95

R-FCN-3000 at 30fps: Decoupling Detection and Classification

5 December 2017
Bharat Singh
Hengduo Li
Abhishek Sharma
L. Davis
    ObjD
ArXiv (abs)PDFHTML
Abstract

We present R-FCN-3000, a large-scale real-time object detector in which objectness detection and classification are decoupled. To obtain the detection score for an RoI, we multiply the objectness score with the fine-grained classification score. Our approach is a modification of the R-FCN architecture in which position-sensitive filters are shared across different object classes for performing localization. For fine-grained classification, these position-sensitive filters are not needed. R-FCN-3000 obtains an mAP of 34.9% on the ImageNet detection dataset and outperforms YOLO-9000 by 18% while processing 30 images per second. We also show that the objectness learned by R-FCN-3000 generalizes to novel classes and the performance increases with the number of training object classes - supporting the hypothesis that it is possible to learn a universal objectness detector. Code will be made available.

View on arXiv
Comments on this paper