ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.02446
  4. Cited By
HyperPower: Power- and Memory-Constrained Hyper-Parameter Optimization
  for Neural Networks

HyperPower: Power- and Memory-Constrained Hyper-Parameter Optimization for Neural Networks

6 December 2017
Dimitrios Stamoulis
E. Cai
Da-Cheng Juan
Diana Marculescu
ArXiv (abs)PDFHTML

Papers citing "HyperPower: Power- and Memory-Constrained Hyper-Parameter Optimization for Neural Networks"

22 / 22 papers shown
Title
THOR: A Generic Energy Estimation Approach for On-Device Training
THOR: A Generic Energy Estimation Approach for On-Device Training
Jiaru Zhang
Zesong Wang
Hao Wang
Tao Song
Huai-an Su
...
Yang Hua
Xiangwei Zhou
Ruhui Ma
Miao Pan
Haibing Guan
106
0
0
27 Jan 2025
eScope: A Fine-Grained Power Prediction Mechanism for Mobile
  Applications
eScope: A Fine-Grained Power Prediction Mechanism for Mobile Applications
Dipayan Mukherjee
Atul Sandur
K. Mechitov
Pratik Lahiri
Gul Agha
27
0
0
05 Apr 2024
Exploring the Carbon Footprint of Hugging Face's ML Models: A Repository
  Mining Study
Exploring the Carbon Footprint of Hugging Face's ML Models: A Repository Mining Study
Joel Castaño
Silverio Martínez-Fernández
Xavier Franch
Justus Bogner
CVBM
98
37
0
18 May 2023
Dynamic GPU Energy Optimization for Machine Learning Training Workloads
Dynamic GPU Energy Optimization for Machine Learning Training Workloads
Farui Wang
Weizhe Zhang
Shichao Lai
Meng Hao
Zheng Wang
65
33
0
05 Jan 2022
A survey on multi-objective hyperparameter optimization algorithms for
  Machine Learning
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
72
103
0
23 Nov 2021
Towards Green Automated Machine Learning: Status Quo and Future
  Directions
Towards Green Automated Machine Learning: Status Quo and Future Directions
Tanja Tornede
Alexander Tornede
Jonas Hanselle
Marcel Wever
F. Mohr
Eyke Hüllermeier
124
38
0
10 Nov 2021
Third ArchEdge Workshop: Exploring the Design Space of Efficient Deep
  Neural Networks
Third ArchEdge Workshop: Exploring the Design Space of Efficient Deep Neural Networks
Fuxun Yu
Dimitrios Stamoulis
Di Wang
Dimitrios Lymberopoulos
Xiang Chen
3DV
51
1
0
22 Nov 2020
Performance Prediction for Convolutional Neural Networks in Edge Devices
Performance Prediction for Convolutional Neural Networks in Edge Devices
Halima Bouzidi
Hamza Ouarnoughi
Smail Niar
A. A. E. Cadi
43
7
0
21 Oct 2020
ConfuciuX: Autonomous Hardware Resource Assignment for DNN Accelerators
  using Reinforcement Learning
ConfuciuX: Autonomous Hardware Resource Assignment for DNN Accelerators using Reinforcement Learning
Sheng-Chun Kao
Geonhwa Jeong
T. Krishna
111
96
0
04 Sep 2020
Carbontracker: Tracking and Predicting the Carbon Footprint of Training
  Deep Learning Models
Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models
Lasse F. Wolff Anthony
Benjamin Kanding
Raghavendra Selvan
HAI
95
316
0
06 Jul 2020
PreVIous: A Methodology for Prediction of Visual Inference Performance
  on IoT Devices
PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT Devices
Delia Velasco-Montero
Jorge Fernández-Berni
R. Carmona-Galán
Á. Rodríguez-Vázquez
39
21
0
13 Dec 2019
On-Device Machine Learning: An Algorithms and Learning Theory
  Perspective
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
129
144
0
02 Nov 2019
Fast Hardware-Aware Neural Architecture Search
Fast Hardware-Aware Neural Architecture Search
Li Zhang
Yuqing Yang
Yuhang Jiang
Wenwu Zhu
Yunxin Liu
3DV
68
61
0
25 Oct 2019
Single-Path Mobile AutoML: Efficient ConvNet Design and NAS
  Hyperparameter Optimization
Single-Path Mobile AutoML: Efficient ConvNet Design and NAS Hyperparameter Optimization
Dimitrios Stamoulis
Ruizhou Ding
Di Wang
Dimitrios Lymberopoulos
B. Priyantha
Jie Liu
Diana Marculescu
59
34
0
01 Jul 2019
SCANN: Synthesis of Compact and Accurate Neural Networks
SCANN: Synthesis of Compact and Accurate Neural Networks
Shayan Hassantabar
Zeyu Wang
N. Jha
36
38
0
19 Apr 2019
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4
  Hours
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours
Dimitrios Stamoulis
Ruizhou Ding
Di Wang
Dimitrios Lymberopoulos
B. Priyantha
Jie Liu
Diana Marculescu
73
285
0
05 Apr 2019
FLightNNs: Lightweight Quantized Deep Neural Networks for Fast and
  Accurate Inference
FLightNNs: Lightweight Quantized Deep Neural Networks for Fast and Accurate Inference
Ruizhou Ding
Z. Liu
Ting-Wu Chin
Diana Marculescu
R. D.
R. D. Blanton
MQ
65
26
0
05 Apr 2019
ChamNet: Towards Efficient Network Design through Platform-Aware Model
  Adaptation
ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation
Xiaoliang Dai
Peizhao Zhang
Bichen Wu
Hongxu Yin
Fei Sun
...
Yiming Wu
Yangqing Jia
Peter Vajda
M. Uyttendaele
N. Jha
94
275
0
21 Dec 2018
TEA-DNN: the Quest for Time-Energy-Accuracy Co-optimized Deep Neural
  Networks
TEA-DNN: the Quest for Time-Energy-Accuracy Co-optimized Deep Neural Networks
Lile Cai
Anne-Maelle Barneche
Arthur Herbout
Chuan-Sheng Foo
Jie Lin
V. Chandrasekhar
M. Sabry
63
16
0
29 Nov 2018
Hardware-Aware Machine Learning: Modeling and Optimization
Hardware-Aware Machine Learning: Modeling and Optimization
Diana Marculescu
Dimitrios Stamoulis
E. Cai
67
45
0
14 Sep 2018
Designing Adaptive Neural Networks for Energy-Constrained Image
  Classification
Designing Adaptive Neural Networks for Energy-Constrained Image Classification
Dimitrios Stamoulis
Ting-Wu Chin
Anand P. Krishnan
Haocheng Fang
S. Sajja
Mitchell Bognar
Diana Marculescu
103
64
0
05 Aug 2018
Not All Ops Are Created Equal!
Not All Ops Are Created Equal!
Liangzhen Lai
Naveen Suda
Vikas Chandra
61
24
0
12 Jan 2018
1