Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02747
Cited By
v1
v2 (latest)
Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression
7 December 2017
O. Catoni
Ilaria Giulini
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression"
28 / 28 papers shown
Title
Time-Uniform Confidence Spheres for Means of Random Vectors
Ben Chugg
Hongjian Wang
Aaditya Ramdas
203
5
0
14 Nov 2023
Covariance Estimation under Missing Observations and
L
4
−
L
2
L_4-L_2
L
4
−
L
2
Moment Equivalence
Pedro Abdalla
67
1
0
22 May 2023
Dimension-free Bounds for Sum of Dependent Matrices and Operators with Heavy-Tailed Distribution
Shogo H. Nakakita
Pierre Alquier
Masaaki Imaizumi
88
2
0
18 Oct 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
84
25
0
17 May 2022
Catoni-style confidence sequences for heavy-tailed mean estimation
Hongjian Wang
Aaditya Ramdas
126
32
0
02 Feb 2022
Dimension-free Bounds for Sums of Independent Matrices and Simple Tensors via the Variational Principle
Nikita Zhivotovskiy
79
35
0
18 Aug 2021
High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data
Lijie Hu
Shuo Ni
Hanshen Xiao
Di Wang
148
53
0
23 Jul 2021
Robust learning with anytime-guaranteed feedback
Matthew J. Holland
OOD
26
0
0
24 May 2021
Concentration study of M-estimators using the influence function
Timothée Mathieu
75
8
0
09 Apr 2021
Distribution-Free Robust Linear Regression
Jaouad Mourtada
Tomas Vaskevicius
Nikita Zhivotovskiy
OOD
74
24
0
25 Feb 2021
New bounds for
k
k
k
-means and information
k
k
k
-means
Gautier Appert
O. Catoni
69
5
0
14 Jan 2021
Optimal Mean Estimation without a Variance
Yeshwanth Cherapanamjeri
Nilesh Tripuraneni
Peter L. Bartlett
Michael I. Jordan
77
23
0
24 Nov 2020
Differentially Private (Gradient) Expectation Maximization Algorithm with Statistical Guarantees
Di Wang
Jiahao Ding
Lijie Hu
Zejun Xie
Miao Pan
Jinhui Xu
33
0
0
22 Oct 2020
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
Di Wang
Hanshen Xiao
S. Devadas
Jinhui Xu
81
57
0
21 Oct 2020
PAC-Bayes unleashed: generalisation bounds with unbounded losses
Maxime Haddouche
Benjamin Guedj
Omar Rivasplata
John Shawe-Taylor
100
56
0
12 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
139
16
0
01 Jun 2020
Generalized Resilience and Robust Statistics
Banghua Zhu
Jiantao Jiao
Jacob Steinhardt
96
45
0
19 Sep 2019
Lecture Notes: Selected topics on robust statistical learning theory
M. Lerasle
OOD
75
32
0
28 Aug 2019
A Unified Approach to Robust Mean Estimation
Adarsh Prasad
Sivaraman Balakrishnan
Pradeep Ravikumar
63
27
0
01 Jul 2019
Distribution-robust mean estimation via smoothed random perturbations
Matthew J. Holland
OOD
68
5
0
25 Jun 2019
Mean estimation and regression under heavy-tailed distributions--a survey
Gabor Lugosi
S. Mendelson
105
246
0
10 Jun 2019
Robust subgaussian estimation of a mean vector in nearly linear time
Jules Depersin
Guillaume Lecué
143
92
0
07 Jun 2019
PAC-Bayes under potentially heavy tails
Matthew J. Holland
128
42
0
20 May 2019
Robust Inference via Multiplier Bootstrap
Xi Chen
Wen-Xin Zhou
54
32
0
18 Mar 2019
Fast Mean Estimation with Sub-Gaussian Rates
Yeshwanth Cherapanamjeri
Nicolas Flammarion
Peter L. Bartlett
84
78
0
06 Feb 2019
Robust descent using smoothed multiplicative noise
Matthew J. Holland
OOD
79
27
0
15 Oct 2018
Near-optimal mean estimators with respect to general norms
Gábor Lugosi
S. Mendelson
61
40
0
16 Jun 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
217
36
0
13 Feb 2018
1