ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.04755
  4. Cited By
Exponential convergence of testing error for stochastic gradient methods

Exponential convergence of testing error for stochastic gradient methods

13 December 2017
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
ArXivPDFHTML

Papers citing "Exponential convergence of testing error for stochastic gradient methods"

7 / 7 papers shown
Title
Active Labeling: Streaming Stochastic Gradients
Active Labeling: Streaming Stochastic Gradients
Vivien A. Cabannes
Francis R. Bach
Vianney Perchet
Alessandro Rudi
66
2
0
26 May 2022
On the Benefits of Large Learning Rates for Kernel Methods
On the Benefits of Large Learning Rates for Kernel Methods
Gaspard Beugnot
Julien Mairal
Alessandro Rudi
32
11
0
28 Feb 2022
Multiclass learning with margin: exponential rates with no bias-variance
  trade-off
Multiclass learning with margin: exponential rates with no bias-variance trade-off
Stefano Vigogna
Giacomo Meanti
Ernesto De Vito
Lorenzo Rosasco
20
2
0
03 Feb 2022
A Theory of Universal Learning
A Theory of Universal Learning
Olivier Bousquet
Steve Hanneke
Shay Moran
Ramon van Handel
Amir Yehudayoff
26
53
0
09 Nov 2020
Weak error analysis for stochastic gradient descent optimization
  algorithms
Weak error analysis for stochastic gradient descent optimization algorithms
A. Bercher
Lukas Gonon
Arnulf Jentzen
Diyora Salimova
36
4
0
03 Jul 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
  Trained with the Logistic Loss
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
39
329
0
11 Feb 2020
Convergence rates for the stochastic gradient descent method for
  non-convex objective functions
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
21
101
0
02 Apr 2019
1