ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05861
  4. Cited By
WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in
  Machine Learning Potentials

WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials

15 December 2017
M. Gastegger
Ludwig Schwiedrzik
Marius Bittermann
Florian Berzsenyi
P. Marquetand
ArXiv (abs)PDFHTML

Papers citing "WACSF - Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials"

17 / 17 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
113
9
0
12 Mar 2025
Pre-training Graph Neural Networks with Structural Fingerprints for Materials Discovery
Shuyi Jia
Shitij Govil
Manav Ramprasad
Victor Fung
AI4CE
169
1
0
03 Mar 2025
Lifelong Machine Learning Potentials
Lifelong Machine Learning Potentials
Marco Eckhoff
Markus Reiher
113
24
0
10 Mar 2023
Tensor-reduced atomic density representations
Tensor-reduced atomic density representations
James P. Darby
D. P. Kovács
Ilyes Batatia
M. A. Caro
G. Hart
Christoph Ortner
Gábor Csányi
131
33
0
02 Oct 2022
Lagrangian Density Space-Time Deep Neural Network Topology
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
75
1
0
30 Jun 2022
Quantum neural networks force fields generation
Quantum neural networks force fields generation
Oriel Kiss
F. Tacchino
S. Vallecorsa
I. Tavernelli
AI4CE
65
20
0
09 Mar 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
234
255
0
01 May 2021
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
141
940
0
14 Oct 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Machine learning and excited-state molecular dynamics
Machine learning and excited-state molecular dynamics
Julia Westermayr
P. Marquetand
AI4CE
58
56
0
28 May 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
73
99
0
26 Mar 2020
DScribe: Library of Descriptors for Machine Learning in Materials
  Science
DScribe: Library of Descriptors for Machine Learning in Materials Science
Lauri Himanen
M. Jäger
Eiaki V. Morooka
F. F. Canova
Y. S. Ranawat
D. Gao
Patrick Rinke
A. Foster
61
591
0
18 Apr 2019
Molecular Dynamics with Neural-Network Potentials
Molecular Dynamics with Neural-Network Potentials
M. Gastegger
P. Marquetand
AI4CE
31
22
0
18 Dec 2018
Learning representations of molecules and materials with atomistic
  neural networks
Learning representations of molecules and materials with atomistic neural networks
Kristof T. Schütt
A. Tkatchenko
K. Müller
NAI
45
13
0
11 Dec 2018
Compressing physical properties of atomic species for improving
  predictive chemistry
Compressing physical properties of atomic species for improving predictive chemistry
John E. Herr
Kevin J Koh
Kun Yao
John A. Parkhill
AI4CE
55
20
0
31 Oct 2018
Quantum-chemical insights from interpretable atomistic neural networks
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
86
32
0
27 Jun 2018
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
Michael Eickenberg
Georgios Exarchakis
M. Hirn
S. Mallat
L. Thiry
79
71
0
01 May 2018
1