ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.02227
  4. Cited By
Gradient Layer: Enhancing the Convergence of Adversarial Training for
  Generative Models

Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models

7 January 2018
Atsushi Nitanda
Taiji Suzuki
    GAN
ArXivPDFHTML

Papers citing "Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models"

5 / 5 papers shown
Title
Nested Annealed Training Scheme for Generative Adversarial Networks
Nested Annealed Training Scheme for Generative Adversarial Networks
Chang Wan
Ming-Hsuan Yang
Minglu Li
Yunliang Jiang
Zhonglong Zheng
GAN
38
0
0
20 Jan 2025
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
A new method for determining Wasserstein 1 optimal transport maps from
  Kantorovich potentials, with deep learning applications
A new method for determining Wasserstein 1 optimal transport maps from Kantorovich potentials, with deep learning applications
Tristan Milne
Étienne Bilocq
A. Nachman
OT
20
3
0
02 Nov 2022
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
19
36
0
24 Jan 2019
Functional Gradient Boosting based on Residual Network Perception
Functional Gradient Boosting based on Residual Network Perception
Atsushi Nitanda
Taiji Suzuki
25
25
0
25 Feb 2018
1