ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.04405
  4. Cited By
A Survey on Compiler Autotuning using Machine Learning
v1v2v3v4v5 (latest)

A Survey on Compiler Autotuning using Machine Learning

13 January 2018
Amir H. Ashouri
W. Killian
John Cavazos
G. Palermo
Cristina Silvano
ArXiv (abs)PDFHTML

Papers citing "A Survey on Compiler Autotuning using Machine Learning"

50 / 56 papers shown
Title
A Deep Learning Model for Predicting Transformation Legality
A Deep Learning Model for Predicting Transformation Legality
Avani Tiwari
Yacine Hakimi
Riyadh Baghdadi
64
0
0
08 Nov 2025
Behavioral Embeddings of Programs: A Quasi-Dynamic Approach for Optimization Prediction
Behavioral Embeddings of Programs: A Quasi-Dynamic Approach for Optimization Prediction
Haolin Pan
Jinyuan Dong
Hongbin Zhang
Hongyu Lin
Mingjie Xing
Yanjun Wu
68
0
0
15 Oct 2025
Regression Language Models for Code
Regression Language Models for Code
Yash Akhauri
Xingyou Song
Arissa Wongpanich
Bryan Lewandowski
Mohamed S. Abdelfattah
132
1
0
30 Sep 2025
Tuning the Tuner: Introducing Hyperparameter Optimization for Auto-Tuning
Tuning the Tuner: Introducing Hyperparameter Optimization for Auto-Tuning
Floris-Jan Willemsen
Rob van Nieuwpoort
Ben van Werkhoven
157
1
0
30 Sep 2025
Compiler-R1: Towards Agentic Compiler Auto-tuning with Reinforcement Learning
Compiler-R1: Towards Agentic Compiler Auto-tuning with Reinforcement Learning
Haolin Pan
Hongyu Lin
Haoran Luo
Yang Liu
Kaichun Yao
Libo Zhang
Mingjie Xing
Yanjun Wu
OffRLLRM
105
4
0
30 May 2025
Investigating Execution-Aware Language Models for Code OptimizationIEEE International Conference on Program Comprehension (ICPC), 2025
Federico Di Menna
Luca Traini
Gabriele Bavota
Vittorio Cortellessa
228
0
0
11 Mar 2025
Breaking the $\log(1/\Delta_2)$ Barrier: Better Batched Best Arm Identification with Adaptive Grids
Breaking the log⁡(1/Δ2)\log(1/\Delta_2)log(1/Δ2​) Barrier: Better Batched Best Arm Identification with Adaptive Grids
Tianyuan Jin
Qin Zhang
Dongruo Zhou
228
0
0
29 Jan 2025
On-line Policy Improvement using Monte-Carlo Search
On-line Policy Improvement using Monte-Carlo SearchNeural Information Processing Systems (NeurIPS), 1996
Gerald Tesauro
Gregory R. Galperin
382
275
0
09 Jan 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUsIEEE International Parallel and Distributed Processing Symposium (IPDPS), 2024
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CEGNN
344
2
0
30 Dec 2024
Scheduling Languages: A Past, Present, and Future Taxonomy
Scheduling Languages: A Past, Present, and Future Taxonomy
Mary Hall
Cosmin Oancea
Anne C. Elster
Ari Rasch
Sameeran Joshi
Amir Mohammad Tavakkoli
Richard Schulze
166
1
0
25 Oct 2024
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Gap-Dependent Bounds for Q-Learning using Reference-Advantage DecompositionInternational Conference on Learning Representations (ICLR), 2024
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
334
8
0
10 Oct 2024
Tadashi: Enabling AI-Based Automated Code Generation With Guaranteed Correctness
Tadashi: Enabling AI-Based Automated Code Generation With Guaranteed Correctness
Emil Vatai
Aleksandr Drozd
Ivan R. Ivanov
João Eduardo Batista
Yinghao Ren
Mohamed Wahib
197
2
0
04 Oct 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
295
2
0
24 Jun 2024
Supersonic: Learning to Generate Source Code Optimizations in C/C++
Supersonic: Learning to Generate Source Code Optimizations in C/C++IEEE Transactions on Software Engineering (TSE), 2023
Zimin Chen
Sen Fang
Monperrus Martin
315
25
0
26 Sep 2023
LoopTune: Optimizing Tensor Computations with Reinforcement Learning
LoopTune: Optimizing Tensor Computations with Reinforcement Learning
Dejan Grubisic
Bram Wasti
Chris Cummins
John Mellor-Crummey
A. Zlateski
197
2
0
04 Sep 2023
Target-independent XLA optimization using Reinforcement Learning
Target-independent XLA optimization using Reinforcement Learning
Milan Ganai
Haichen Li
Theodore Enns
Yida Wang
Randy Huang
173
1
0
28 Aug 2023
SEER: Super-Optimization Explorer for HLS using E-graph Rewriting with
  MLIR
SEER: Super-Optimization Explorer for HLS using E-graph Rewriting with MLIR
Jianyi Cheng
Samuel Coward
Lorenzo Chelini
ra M. Barbalho
Theo Drane
48
6
0
15 Aug 2023
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large
  Scales
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large ScalesConcurrency and Computation (CCPE), 2023
Xingfu Wu
Dali Wang
Michael Kruse
Jaehoon Koo
B. Videau
P. Hovland
V. Taylor
B. Geltz
Siddhartha Jana
Mary W. Hall
151
24
0
28 Mar 2023
Kernel Launcher: C++ Library for Optimal-Performance Portable CUDA
  Applications
Kernel Launcher: C++ Library for Optimal-Performance Portable CUDA Applications
Stijn Heldens
Ben van Werkhoven
116
4
0
22 Mar 2023
Machine Learning-Driven Adaptive OpenMP For Portable Performance on
  Heterogeneous Systems
Machine Learning-Driven Adaptive OpenMP For Portable Performance on Heterogeneous Systems
Giorgis Georgakoudis
K. Parasyris
C. Liao
D. Beckingsale
T. Gamblin
B. D. Supinski
98
1
0
15 Mar 2023
Power Constrained Autotuning using Graph Neural Networks
Power Constrained Autotuning using Graph Neural NetworksIEEE International Parallel and Distributed Processing Symposium (IPDPS), 2023
Akashnil Dutta
JeeWhan Choi
Ali Jannesari
144
6
0
22 Feb 2023
Compiler Optimization for Quantum Computing Using Reinforcement Learning
Compiler Optimization for Quantum Computing Using Reinforcement LearningDesign Automation Conference (DAC), 2022
Nils Quetschlich
Lukas Burgholzer
Robert Wille
138
33
0
08 Dec 2022
Going green: optimizing GPUs for energy efficiency through model-steered
  auto-tuning
Going green: optimizing GPUs for energy efficiency through model-steered auto-tuningInternational Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 2022
R. Schoonhoven
B. Veenboer
Ben van Werkhoven
K. Batenburg
130
18
0
14 Nov 2022
Benchmarking optimization algorithms for auto-tuning GPU kernels
Benchmarking optimization algorithms for auto-tuning GPU kernelsIEEE Transactions on Evolutionary Computation (TEVC), 2022
R. Schoonhoven
Ben van Werkhoven
K. Batenburg
111
14
0
04 Oct 2022
Towards making the most of NLP-based device mapping optimization for
  OpenCL kernels
Towards making the most of NLP-based device mapping optimization for OpenCL kernels
Petros Vavaroutsos
Ioannis Oroutzoglou
Dimosthenis Masouros
Dimitrios Soudris
74
0
0
30 Aug 2022
Finding Reusable Machine Learning Components to Build Programming
  Language Processing Pipelines
Finding Reusable Machine Learning Components to Build Programming Language Processing PipelinesEuropean Conference on Software Architecture (ECSA), 2022
Patrick Flynn
T. Vanderbruggen
C. Liao
Pei-Hung Lin
M. Emani
Xipeng Shen
176
5
0
11 Aug 2022
MAGPIE: Machine Automated General Performance Improvement via Evolution
  of Software
MAGPIE: Machine Automated General Performance Improvement via Evolution of Software
Aymeric Blot
J. Petke
101
18
0
04 Aug 2022
MLGOPerf: An ML Guided Inliner to Optimize Performance
MLGOPerf: An ML Guided Inliner to Optimize Performance
Amir H. Ashouri
Mostafa Elhoushi
Yu-Wei Hua
Xiang Wang
Muhammad Asif Manzoor
Bryan Chan
Yaoqing Gao
171
15
0
18 Jul 2022
End-to-end Mapping in Heterogeneous Systems Using Graph Representation
  Learning
End-to-end Mapping in Heterogeneous Systems Using Graph Representation Learning
Yao Xiao
Guixiang Ma
Nesreen Ahmed
Mihai Capota
Ted Willke
Shahin Nazarian
P. Bogdan
165
2
0
25 Apr 2022
Unlocking the Secrets of Software Configuration Landscapes-Ruggedness,
  Accessibility, Escapability, and Transferability
Unlocking the Secrets of Software Configuration Landscapes-Ruggedness, Accessibility, Escapability, and Transferability
Mingyu Huang
Peili Mao
Ke Li
142
1
0
05 Jan 2022
Profile Guided Optimization without Profiles: A Machine Learning
  Approach
Profile Guided Optimization without Profiles: A Machine Learning Approach
Nadav Rotem
Chris Cummins
OffRL
185
10
0
24 Dec 2021
Fine-Tuning Data Structures for Analytical Query Processing
Fine-Tuning Data Structures for Analytical Query Processing
Amir Shaikhha
Marios Kelepeshis
Mahdi Ghorbani
92
1
0
24 Dec 2021
Generating GPU Compiler Heuristics using Reinforcement Learning
Generating GPU Compiler Heuristics using Reinforcement Learning
Ian Colbert
Jake Daly
Norman Rubin
147
3
0
23 Nov 2021
Constraint-based Diversification of JOP Gadgets
Constraint-based Diversification of JOP Gadgets
R. Tsoupidi
Roberto Castañeda Lozano
Benoit Baudry
123
4
0
18 Nov 2021
CompilerGym: Robust, Performant Compiler Optimization Environments for
  AI Research
CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research
Chris Cummins
Bram Wasti
Jiadong Guo
Brandon Cui
Jason Ansel
...
Jia-Wei Liu
O. Teytaud
Benoit Steiner
Yuandong Tian
Hugh Leather
212
98
0
17 Sep 2021
Using Graph Neural Networks to model the performance of Deep Neural
  Networks
Using Graph Neural Networks to model the performance of Deep Neural Networks
Shikhar Singh
Benoit Steiner
James Hegarty
Hugh Leather
GNN
103
4
0
27 Aug 2021
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization
  Pragmas Using Bayesian Optimization (extended version)
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization Pragmas Using Bayesian Optimization (extended version)International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (SHPCS), 2020
Xingfu Wu
Michael Kruse
Dali Wang
H. Finkel
P. Hovland
V. Taylor
Mary W. Hall
141
38
0
27 Apr 2021
LS-CAT: A Large-Scale CUDA AutoTuning Dataset
LS-CAT: A Large-Scale CUDA AutoTuning Dataset
Lars Bjertnes
Jacob O. Tørring
A. Elster
124
6
0
26 Mar 2021
MLComp: A Methodology for Machine Learning-based Performance Estimation
  and Adaptive Selection of Pareto-Optimal Compiler Optimization Sequences
MLComp: A Methodology for Machine Learning-based Performance Estimation and Adaptive Selection of Pareto-Optimal Compiler Optimization SequencesDesign, Automation and Test in Europe (DATE), 2020
Alessio Colucci
Dávid Juhász
Martin Mosbeck
Alberto Marchisio
Semeen Rehman
Manfred Kreutzer
Guenther Nadbath
A. Jantsch
Mohamed Bennai
133
5
0
09 Dec 2020
Deep Data Flow Analysis
Deep Data Flow Analysis
Chris Cummins
Hugh Leather
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Michael F. P. O'Boyle
117
6
0
21 Nov 2020
Autotuning Search Space for Loop Transformations
Autotuning Search Space for Loop Transformations
Michael Kruse
H. Finkel
Xingfu Wu
93
9
0
13 Oct 2020
OneStopTuner: An End to End Architecture for JVM Tuning of Spark
  Applications
OneStopTuner: An End to End Architecture for JVM Tuning of Spark Applications
Venktesh V
Pooja B Bindal
Devesh Singhal
A. V. Subramanyam
Vivek Kumar
57
3
0
07 Sep 2020
Static Neural Compiler Optimization via Deep Reinforcement Learning
Static Neural Compiler Optimization via Deep Reinforcement Learning
Rahim Mammadli
Ali Jannesari
F. Wolf
209
37
0
20 Aug 2020
MLOS: An Infrastructure for Automated Software Performance Engineering
MLOS: An Infrastructure for Automated Software Performance Engineering
Carlo Curino
Neha Godwal
Brian Kroth
S. Kuryata
Greg Lapinski
...
Olga Poppe
Adam Śmiechowski
Ed Thayer
Markus Weimer
Yiwen Zhu
120
17
0
01 Jun 2020
ProTuner: Tuning Programs with Monte Carlo Tree Search
ProTuner: Tuning Programs with Monte Carlo Tree Search
Ameer Haj-Ali
Hasan Genç
Qijing Huang
William S. Moses
J. Wawrzynek
Krste Asanović
Ion Stoica
154
27
0
27 May 2020
A Collaborative Filtering Approach for the Automatic Tuning of Compiler
  Optimisations
A Collaborative Filtering Approach for the Automatic Tuning of Compiler OptimisationsACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), 2020
Stefano Cereda
G. Palermo
Paolo Cremonesi
Stefano Doni
103
19
0
06 May 2020
ProGraML: Graph-based Deep Learning for Program Optimization and
  Analysis
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
297
67
0
23 Mar 2020
Benanza: Automatic $μ$Benchmark Generation to Compute "Lower-bound"
  Latency and Inform Optimizations of Deep Learning Models on GPUs
Benanza: Automatic μμμBenchmark Generation to Compute "Lower-bound" Latency and Inform Optimizations of Deep Learning Models on GPUsIEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019
Cheng-rong Li
Abdul Dakkak
Jinjun Xiong
Wen-mei W. Hwu
182
11
0
16 Nov 2019
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement
  Learning
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement LearningIEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2019
Ameer Haj-Ali
Nesreen Ahmed
Theodore L. Willke
Sophia Shao
Krste Asanović
Ion Stoica
218
110
0
20 Sep 2019
A View on Deep Reinforcement Learning in System Optimization
A View on Deep Reinforcement Learning in System Optimization
Ameer Haj-Ali
Nesreen Ahmed
Theodore L. Willke
Joseph E. Gonzalez
Krste Asanović
Ion Stoica
OffRL
218
8
0
04 Aug 2019
12
Next