ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.05507
  4. Cited By
Gazelle: A Low Latency Framework for Secure Neural Network Inference

Gazelle: A Low Latency Framework for Secure Neural Network Inference

16 January 2018
Chiraag Juvekar
Vinod Vaikuntanathan
A. Chandrakasan
ArXiv (abs)PDFHTML

Papers citing "Gazelle: A Low Latency Framework for Secure Neural Network Inference"

50 / 311 papers shown
Title
Efficient CNN Building Blocks for Encrypted Data
Efficient CNN Building Blocks for Encrypted Data
Nayna Jain
Karthik Nandakumar
Nalini Ratha
Sharath Pankanti
U. Kumar
FedML
63
14
0
30 Jan 2021
S++: A Fast and Deployable Secure-Computation Framework for
  Privacy-Preserving Neural Network Training
S++: A Fast and Deployable Secure-Computation Framework for Privacy-Preserving Neural Network Training
Prashanthi Ramachandran
Shivam Agarwal
A. Mondal
Aastha Shah
Debayan Gupta
FedML
36
9
0
28 Jan 2021
Reducing ReLU Count for Privacy-Preserving CNN Speedup
Reducing ReLU Count for Privacy-Preserving CNN Speedup
Inbar Helbitz
S. Avidan
33
4
0
28 Jan 2021
secureTF: A Secure TensorFlow Framework
secureTF: A Secure TensorFlow Framework
D. Quoc
Franz Gregor
Sergei Arnautov
Roland Kunkel
Pramod Bhatotia
Christof Fetzer
93
40
0
20 Jan 2021
Porcupine: A Synthesizing Compiler for Vectorized Homomorphic Encryption
Porcupine: A Synthesizing Compiler for Vectorized Homomorphic Encryption
M. Cowan
Deeksha Dangwal
Armin Alaghi
Caroline Trippel
Vincent T. Lee
Brandon Reagen
25
37
0
19 Jan 2021
Fast Privacy-Preserving Text Classification based on Secure Multiparty
  Computation
Fast Privacy-Preserving Text Classification based on Secure Multiparty Computation
A. Resende
Davis Railsback
Rafael Dowsley
Anderson C. A. Nascimento
Diego F. Aranha
55
21
0
18 Jan 2021
SoK: Fully Homomorphic Encryption Compilers
SoK: Fully Homomorphic Encryption Compilers
Alexander Viand
Patrick Jattke
Anwar Hithnawi
75
99
0
18 Jan 2021
Neural Network Training With Homomorphic Encryption
Neural Network Training With Homomorphic Encryption
Kentaro Mihara
Ryohei Yamaguchi
M. Mitsuishi
Y. Maruyama
29
7
0
25 Dec 2020
DISCO: Dynamic and Invariant Sensitive Channel Obfuscation for deep
  neural networks
DISCO: Dynamic and Invariant Sensitive Channel Obfuscation for deep neural networks
Abhishek Singh
Ayush Chopra
Vivek Sharma
Ethan Garza
Emily Zhang
Praneeth Vepakomma
Ramesh Raskar
52
46
0
20 Dec 2020
FedServing: A Federated Prediction Serving Framework Based on Incentive
  Mechanism
FedServing: A Federated Prediction Serving Framework Based on Incentive Mechanism
Jiasi Weng
Jian Weng
Hongwei Huang
Chengjun Cai
Cong Wang
FedML
57
28
0
19 Dec 2020
Towards Scalable and Privacy-Preserving Deep Neural Network via
  Algorithmic-Cryptographic Co-design
Towards Scalable and Privacy-Preserving Deep Neural Network via Algorithmic-Cryptographic Co-design
Jun Zhou
Longfei Zheng
Chaochao Chen
Yan Wang
Xiaolin Zheng
Bingzhe Wu
Cen Chen
Li Wang
Jianwei Yin
FedML
61
3
0
17 Dec 2020
Secure Medical Image Analysis with CrypTFlow
Secure Medical Image Analysis with CrypTFlow
Javier Alvarez-Valle
Pratik Bhatu
Nishanth Chandran
Divya Gupta
A. Nori
Aseem Rastogi
Mayank Rathee
Rahul Sharma
Shubham Ugare
MedIm
66
13
0
09 Dec 2020
SoK: Training Machine Learning Models over Multiple Sources with Privacy
  Preservation
SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation
Lushan Song
Guopeng Lin
Jiaxuan Wang
Haoqi Wu
Wenqiang Ruan
Weili Han
142
9
0
06 Dec 2020
Customizing Trusted AI Accelerators for Efficient Privacy-Preserving
  Machine Learning
Customizing Trusted AI Accelerators for Efficient Privacy-Preserving Machine Learning
Peichen Xie
Xuanle Ren
Guangyu Sun
FedML
32
6
0
12 Nov 2020
ShadowNet: A Secure and Efficient On-device Model Inference System for
  Convolutional Neural Networks
ShadowNet: A Secure and Efficient On-device Model Inference System for Convolutional Neural Networks
Zhichuang Sun
Ruimin Sun
Changming Liu
A. Chowdhury
Long Lu
S. Jha
FedML
105
20
0
11 Nov 2020
Privacy-Preserving XGBoost Inference
Privacy-Preserving XGBoost Inference
Xianrui Meng
J. Feigenbaum
62
14
0
09 Nov 2020
HeLayers: A Tile Tensors Framework for Large Neural Networks on
  Encrypted Data
HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data
E. Aharoni
Allon Adir
Moran Baruch
Nir Drucker
Gilad Ezov
...
Ramy Masalha
Guy Moshkowich
Dov Murik
Hayim Shaul
Omri Soceanu
FedML
119
58
0
03 Nov 2020
CryptoGRU: Low Latency Privacy-Preserving Text Analysis With GRU
CryptoGRU: Low Latency Privacy-Preserving Text Analysis With GRU
Bo Feng
Qian Lou
Lei Jiang
Geoffrey C. Fox
62
15
0
22 Oct 2020
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
139
316
0
13 Oct 2020
STR: Secure Computation on Additive Shares Using the
  Share-Transform-Reveal Strategy
STR: Secure Computation on Additive Shares Using the Share-Transform-Reveal Strategy
Zhihua Xia
Qi Gu
Wenhao Zhou
Lizhi Xiong
J. Weng
Neal N. Xiong
51
0
0
28 Sep 2020
Privacy-Preserving Machine Learning Training in Aggregation Scenarios
Privacy-Preserving Machine Learning Training in Aggregation Scenarios
Liehuang Zhu
Xiangyun Tang
Meng Shen
Jie Zhang
Xiaojiang Du
54
4
0
21 Sep 2020
Privacy-Preserving Image Retrieval Based on Additive Secret Sharing
Privacy-Preserving Image Retrieval Based on Additive Secret Sharing
Zhihua Xia
Qi Gu
Lizhi Xiong
Wenhao Zhou
J. Weng
13
8
0
15 Sep 2020
Accelerating 2PC-based ML with Limited Trusted Hardware
Accelerating 2PC-based ML with Limited Trusted Hardware
M. Nawaz
Aditya Gulati
Kunlong Liu
Vishwajeet Agrawal
P. Ananth
Trinabh Gupta
113
2
0
11 Sep 2020
Fairness in the Eyes of the Data: Certifying Machine-Learning Models
Fairness in the Eyes of the Data: Certifying Machine-Learning Models
Shahar Segal
Yossi Adi
Benny Pinkas
Carsten Baum
C. Ganesh
Joseph Keshet
FedML
59
37
0
03 Sep 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
47
156
0
01 Sep 2020
Data-driven control on encrypted data
Data-driven control on encrypted data
A. Alexandru
Anastasios Tsiamis
George J. Pappas
43
6
0
28 Aug 2020
Efficient Private Machine Learning by Differentiable Random
  Transformations
Efficient Private Machine Learning by Differentiable Random Transformations
F. Zheng
16
0
0
18 Aug 2020
Key-Nets: Optical Transformation Convolutional Networks for Privacy
  Preserving Vision Sensors
Key-Nets: Optical Transformation Convolutional Networks for Privacy Preserving Vision Sensors
J. Byrne
Brian DeCann
S. Bloom
PICV
29
5
0
11 Aug 2020
Trustworthy AI Inference Systems: An Industry Research View
Trustworthy AI Inference Systems: An Industry Research View
Rosario Cammarota
M. Schunter
Anand Rajan
Fabian Boemer
Ágnes Kiss
...
Aydin Aysu
Fateme S. Hosseini
Chengmo Yang
Eric Wallace
Pam Norton
99
14
0
10 Aug 2020
VFL: A Verifiable Federated Learning with Privacy-Preserving for Big
  Data in Industrial IoT
VFL: A Verifiable Federated Learning with Privacy-Preserving for Big Data in Industrial IoT
Anmin Fu
Xianglong Zhang
N. Xiong
Yansong Gao
Huaqun Wang
FedML
55
183
0
27 Jul 2020
SOTERIA: In Search of Efficient Neural Networks for Private Inference
SOTERIA: In Search of Efficient Neural Networks for Private Inference
Anshul Aggarwal
Trevor E. Carlson
Reza Shokri
Shruti Tople
FedML
44
11
0
25 Jul 2020
MPC-enabled Privacy-Preserving Neural Network Training against Malicious
  Attack
MPC-enabled Privacy-Preserving Neural Network Training against Malicious Attack
Ziyao Liu
Ivan Tjuawinata
C. Xing
K. Lam
60
9
0
24 Jul 2020
BUNET: Blind Medical Image Segmentation Based on Secure UNET
BUNET: Blind Medical Image Segmentation Based on Secure UNET
S. Bian
Xiaowei Xu
Weiwen Jiang
Yiyu Shi
Takashi Sato
52
6
0
14 Jul 2020
Additively Homomorphical Encryption based Deep Neural Network for
  Asymmetrically Collaborative Machine Learning
Additively Homomorphical Encryption based Deep Neural Network for Asymmetrically Collaborative Machine Learning
Yifei Zhang
Hao Zhu
FedML
56
42
0
14 Jul 2020
Privacy and Integrity Preserving Computations with CRISP
Privacy and Integrity Preserving Computations with CRISP
Sylvain Chatel
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Jean-Pierre Hubaux
34
9
0
08 Jul 2020
Offline Model Guard: Secure and Private ML on Mobile Devices
Offline Model Guard: Secure and Private ML on Mobile Devices
Sebastian P. Bayerl
Tommaso Frassetto
Patrick Jauernig
Korbinian Riedhammer
A. Sadeghi
T. Schneider
Emmanuel Stapf
Christian Weinert
OffRL
67
45
0
05 Jul 2020
Private Speech Classification with Secure Multiparty Computation
Private Speech Classification with Secure Multiparty Computation
Kyle Bittner
Martine De Cock
Rafael Dowsley
45
1
0
01 Jul 2020
Rotation-Equivariant Neural Networks for Privacy Protection
Rotation-Equivariant Neural Networks for Privacy Protection
Hao Zhang
Yiting Chen
Haotian Ma
Xu Cheng
Qihan Ren
Liyao Xiang
Jie Shi
Quanshi Zhang
27
3
0
21 Jun 2020
Faster Secure Data Mining via Distributed Homomorphic Encryption
Faster Secure Data Mining via Distributed Homomorphic Encryption
Junyi Li
Heng-Chiao Huang
FedML
67
21
0
17 Jun 2020
Visor: Privacy-Preserving Video Analytics as a Cloud Service
Visor: Privacy-Preserving Video Analytics as a Cloud Service
Rishabh Poddar
Ganesh Ananthanarayanan
Srinath T. V. Setty
Stavros Volos
Raluca A. Popa
69
64
0
17 Jun 2020
BoMaNet: Boolean Masking of an Entire Neural Network
BoMaNet: Boolean Masking of an Entire Neural Network
Anuj Dubey
Rosario Cammarota
Aydin Aysu
AAML
71
46
0
16 Jun 2020
SPEED: Secure, PrivatE, and Efficient Deep learning
SPEED: Secure, PrivatE, and Efficient Deep learning
Arnaud Grivet Sébert
Rafael Pinot
Martin Zuber
Cédric Gouy-Pailler
Renaud Sirdey
FedML
55
20
0
16 Jun 2020
CryptoNAS: Private Inference on a ReLU Budget
CryptoNAS: Private Inference on a ReLU Budget
Zahra Ghodsi
A. Veldanda
Brandon Reagen
S. Garg
87
87
0
15 Jun 2020
Secure Byzantine-Robust Machine Learning
Secure Byzantine-Robust Machine Learning
Lie He
Sai Praneeth Karimireddy
Martin Jaggi
OOD
81
60
0
08 Jun 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function
  Secret Sharing
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
157
100
0
08 Jun 2020
AutoPrivacy: Automated Layer-wise Parameter Selection for Secure Neural
  Network Inference
AutoPrivacy: Automated Layer-wise Parameter Selection for Secure Neural Network Inference
Qian Lou
B. Song
Lei Jiang
71
36
0
07 Jun 2020
Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative
  Deep Learning
Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative Deep Learning
Derian Boer
Stefan Kramer
FedML
63
8
0
02 Jun 2020
DarKnight: A Data Privacy Scheme for Training and Inference of Deep
  Neural Networks
DarKnight: A Data Privacy Scheme for Training and Inference of Deep Neural Networks
H. Hashemi
Yongqin Wang
M. Annavaram
FedML
67
26
0
01 Jun 2020
Cheetah: Optimizing and Accelerating Homomorphic Encryption for Private
  Inference
Cheetah: Optimizing and Accelerating Homomorphic Encryption for Private Inference
Brandon Reagen
Wooseok Choi
Yeongil Ko
Vincent T. Lee
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
46
16
0
31 May 2020
Scalable Privacy-Preserving Distributed Learning
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
84
70
0
19 May 2020
Previous
1234567
Next