ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.09319
  4. Cited By
Less is more: sampling chemical space with active learning
v1v2 (latest)

Less is more: sampling chemical space with active learning

28 January 2018
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
ArXiv (abs)PDFHTML

Papers citing "Less is more: sampling chemical space with active learning"

50 / 90 papers shown
Title
Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space
Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space
Fuchun Ge
Pavlo O. Dral
AI4CE
70
1
0
22 May 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
181
1
0
30 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
174
35
0
12 Mar 2025
Learning atomic forces from uncertainty-calibrated adversarial attacks
Learning atomic forces from uncertainty-calibrated adversarial attacks
Henrique Musseli Cezar
Tilmann Bodenstein
Henrik Andersen Sveinsson
Morten Ledum
Simen Reine
Sigbjørn Løland Bore
AAMLAI4CE
136
0
0
25 Feb 2025
Implicit Delta Learning of High Fidelity Neural Network Potentials
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
248
1
0
08 Dec 2024
OpenQDC: Open Quantum Data Commons
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
223
1
0
29 Nov 2024
Efficient Biological Data Acquisition through Inference Set Design
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Emmanuel Bengio
Jason Hartford
159
2
0
25 Oct 2024
regAL: Python Package for Active Learning of Regression Problems
regAL: Python Package for Active Learning of Regression Problems
Elizaveta Surzhikova
Jonny Proppe
AI4CE
79
2
0
23 Oct 2024
Pretraining Graph Transformers with Atom-in-a-Molecule Quantum
  Properties for Improved ADMET Modeling
Pretraining Graph Transformers with Atom-in-a-Molecule Quantum Properties for Improved ADMET Modeling
Alessio Fallani
Ramil I. Nugmanov
Jose A. Arjona-Medina
Jörg Kurt Wegner
Alexandre Tkatchenko
Kostiantyn Chernichenko
MedImAI4CE
106
5
0
10 Oct 2024
All-in-one foundational models learning across quantum chemical levels
All-in-one foundational models learning across quantum chemical levels
Yuxinxin Chen
Pavlo O. Dral
AI4CE
119
2
0
18 Sep 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
201
12
0
03 Sep 2024
${\it Asparagus}$: A Toolkit for Autonomous, User-Guided Construction of
  Machine-Learned Potential Energy Surfaces
Asparagus{\it Asparagus}Asparagus: A Toolkit for Autonomous, User-Guided Construction of Machine-Learned Potential Energy Surfaces
K. Töpfer
Luis Itza Vazquez-Salazar
Markus Meuwly
109
5
0
21 Jul 2024
CheMFi: A Multifidelity Dataset of Quantum Chemical Properties of
  Diverse Molecules
CheMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules
Vivin Vinod
Peter Zaspel
116
7
0
20 Jun 2024
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
263
2
0
20 May 2024
Dflow, a Python framework for constructing cloud-native AI-for-Science
  workflows
Dflow, a Python framework for constructing cloud-native AI-for-Science workflows
Xinzijian Liu
Yanbo Han
Zhuoyuan Li
Jiahao Fan
Chengqian Zhang
...
Zhicheng Zhong
Hang Zheng
Jun Cheng
Linfeng Zhang
Han Wang
AI4CE
46
2
0
29 Apr 2024
Physics-informed active learning for accelerating quantum chemical
  simulations
Physics-informed active learning for accelerating quantum chemical simulations
Yi-Fan Hou
Lina Zhang
Quanhao Zhang
Fuchun Ge
Pavlo O. Dral
AI4CE
147
7
0
18 Apr 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffMAI4CE
99
17
0
14 Mar 2024
Deciphering diffuse scattering with machine learning and the equivariant
  foundation model: The case of molten FeO
Deciphering diffuse scattering with machine learning and the equivariant foundation model: The case of molten FeO
Ganesh Sivaraman
C. Benmore
AI4CE
70
0
0
01 Mar 2024
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular
  Simulations
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations
Raúl P. Peláez
Guillem Simeon
Raimondas Galvelis
Antonio Mirarchi
Peter K. Eastman
Stefan Doerr
Philipp Thölke
T. Markland
Gianni De Fabritiis
AI4CE
231
23
0
27 Feb 2024
Image Super-resolution Inspired Electron Density Prediction
Image Super-resolution Inspired Electron Density Prediction
Chenghan Li
Or Sharir
Shunyue Yuan
G. Chan
DiffM
79
7
0
19 Feb 2024
3DReact: Geometric deep learning for chemical reactions
3DReact: Geometric deep learning for chemical reactions
Puck van Gerwen
K. Briling
Charlotte Bunne
Vignesh Ram Somnath
Rubén Laplaza
Andreas Krause
C. Corminboeuf
3DV
141
10
0
13 Dec 2023
Coherent energy and force uncertainty in deep learning force fields
Coherent energy and force uncertainty in deep learning force fields
Peter Bjørn Jørgensen
Jonas Busk
Ole Winther
Mikkel N. Schmidt
81
3
0
07 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case
  Study of Liquid Water
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
108
20
0
03 Dec 2023
MLatom 3: Platform for machine learning-enhanced computational chemistry
  simulations and workflows
MLatom 3: Platform for machine learning-enhanced computational chemistry simulations and workflows
Pavlo O. Dral
Fuchun Ge
Yi-Fan Hou
Peikun Zheng
Yuxinxin Chen
...
Lina Zhang
Shuang Zhang
Arif Ullah
Quanhao Zhang
Yanchi Ou
68
37
0
31 Oct 2023
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Jenna C. Fromer
David E. Graff
Connor W. Coley
113
10
0
16 Oct 2023
Spline-based neural network interatomic potentials: blending classical
  and machine learning models
Spline-based neural network interatomic potentials: blending classical and machine learning models
Joshua A Vita
D. Trinkle
80
5
0
04 Oct 2023
Accurate machine learning force fields via experimental and simulation
  data fusion
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
Julija Zavadlav
AI4CE
110
23
0
17 Aug 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni De Fabritiis
176
58
0
10 Jun 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
144
117
0
23 May 2023
Graph Neural Network Interatomic Potential Ensembles with Calibrated
  Aleatoric and Epistemic Uncertainty on Energy and Forces
Graph Neural Network Interatomic Potential Ensembles with Calibrated Aleatoric and Epistemic Uncertainty on Energy and Forces
Jonas Busk
Mikkel N. Schmidt
Ole Winther
Tejs Vegge
Peter Bjørn Jørgensen
95
10
0
10 May 2023
Molecule-Morphology Contrastive Pretraining for Transferable Molecular
  Representation
Molecule-Morphology Contrastive Pretraining for Transferable Molecular Representation
Cuong Q. Nguyen
Dante A. Pertusi
K. Branson
AI4CE
89
13
0
27 Apr 2023
Deep Learning Techniques for Hyperspectral Image Analysis in
  Agriculture: A Review
Deep Learning Techniques for Hyperspectral Image Analysis in Agriculture: A Review
Mohamed Fadhlallah Guerri
C. Distante
Paolo Spagnolo
F. Bougourzi
A. Taleb-Ahmed
108
80
0
26 Apr 2023
InstructBio: A Large-scale Semi-supervised Learning Paradigm for
  Biochemical Problems
InstructBio: A Large-scale Semi-supervised Learning Paradigm for Biochemical Problems
Fang Wu
Huiling Qin
Siyuan Li
Stan Z. Li
Xianyuan Zhan
Jinbo Xu
138
5
0
08 Apr 2023
Lifelong Machine Learning Potentials
Lifelong Machine Learning Potentials
Marco Eckhoff
Markus Reiher
196
24
0
10 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAMLAI4CE
183
22
0
03 Mar 2023
Discovery of structure-property relations for molecules via
  hypothesis-driven active learning over the chemical space
Discovery of structure-property relations for molecules via hypothesis-driven active learning over the chemical space
Ayana Ghosh
Sergei V. Kalinin
M. Ziatdinov
100
9
0
06 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
145
21
0
15 Dec 2022
Transfer learning for chemically accurate interatomic neural network
  potentials
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
137
28
0
07 Dec 2022
AfroLM: A Self-Active Learning-based Multilingual Pretrained Language
  Model for 23 African Languages
AfroLM: A Self-Active Learning-based Multilingual Pretrained Language Model for 23 African Languages
Bonaventure F. P. Dossou
A. Tonja
Oreen Yousuf
Salomey Osei
Abigail Oppong
Iyanuoluwa Shode
Oluwabusayo Olufunke Awoyomi
Chris C. Emezue
121
60
0
07 Nov 2022
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Jenna C. Fromer
Connor W. Coley
114
77
0
13 Oct 2022
When does deep learning fail and how to tackle it? A critical analysis
  on polymer sequence-property surrogate models
When does deep learning fail and how to tackle it? A critical analysis on polymer sequence-property surrogate models
Himanshu
T. Patra
AI4CE
54
1
0
12 Oct 2022
Active Few-Shot Classification: a New Paradigm for Data-Scarce Learning
  Settings
Active Few-Shot Classification: a New Paradigm for Data-Scarce Learning Settings
Aymane Abdali
Vincent Gripon
Lucas Drumetz
Bartosz Bogusławski
107
1
0
23 Sep 2022
Unveil the unseen: Exploit information hidden in noise
Unveil the unseen: Exploit information hidden in noise
Bahdan Zviazhynski
G. Conduit
56
3
0
17 Sep 2022
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular
  Simulation
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation
Duoduo Zhang
Hangrui Bi
Fu-Zhi Dai
Wanrun Jiang
Linfeng Zhang
Han Wang
AI4CE
149
56
0
17 Aug 2022
Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
  Learning
Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine Learning
Siba Moussa
Michael Kilgour
Clara Jans
Alex Hernandez-Garcia
M. Čuperlović-Culf
Yoshua Bengio
L. Simine
72
7
0
10 Aug 2022
Transition1x -- a Dataset for Building Generalizable Reactive Machine
  Learning Potentials
Transition1x -- a Dataset for Building Generalizable Reactive Machine Learning Potentials
Mathias Jacob Schreiner
Arghya Bhowmik
Tejs Vegge
Jonas Busk
Ole Winther
132
88
0
25 Jul 2022
NeuralNEB -- Neural Networks can find Reaction Paths Fast
NeuralNEB -- Neural Networks can find Reaction Paths Fast
Mathias Jacob Schreiner
Arghya Bhowmik
Tejs Vegge
Peter Bjørn Jørgensen
Ole Winther
196
34
0
20 Jul 2022
PyRelationAL: a python library for active learning research and
  development
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
91
2
0
23 May 2022
Machine Learning Diffusion Monte Carlo Energies
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
106
16
0
09 May 2022
Towards Robust Deep Active Learning for Scientific Computing
Towards Robust Deep Active Learning for Scientific Computing
Simiao Ren
Yang Deng
Willie J. Padilla
Jordan M. Malof
OOD
94
0
0
29 Jan 2022
12
Next