ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03063
  4. Cited By
Learning Latent Representations in Neural Networks for Clustering
  through Pseudo Supervision and Graph-based Activity Regularization

Learning Latent Representations in Neural Networks for Clustering through Pseudo Supervision and Graph-based Activity Regularization

8 February 2018
Ozsel Kilinc
Ismail Uysal
ArXiv (abs)PDFHTML

Papers citing "Learning Latent Representations in Neural Networks for Clustering through Pseudo Supervision and Graph-based Activity Regularization"

15 / 15 papers shown
Title
Incorporating Pre-training Data Matters in Unsupervised Domain Adaptation
Incorporating Pre-training Data Matters in Unsupervised Domain Adaptation
Yinsong Xu
Aidong Men
Yang Liu
Xiahai Zhuang
Qingchao Chen
63
0
0
06 Aug 2023
Geographical Knowledge-driven Representation Learning for Remote Sensing
  Images
Geographical Knowledge-driven Representation Learning for Remote Sensing Images
Wenyuan Li
Keyan Chen
Hao Chen
Zhenwei Shi
SSL
86
69
0
12 Jul 2021
Neural Mixture Models with Expectation-Maximization for End-to-end Deep
  Clustering
Neural Mixture Models with Expectation-Maximization for End-to-end Deep Clustering
Dumindu Tissera
Kasun Vithanage
Rukshan Wijesinghe
A. Xavier
Sanath Jayasena
Subha Fernando
Ranga Rodrigo
FedML
26
4
0
06 Jul 2021
Multi-Facet Clustering Variational Autoencoders
Multi-Facet Clustering Variational Autoencoders
Fabian Falck
Haoting Zhang
M. Willetts
G. Nicholson
C. Yau
Chris Holmes
DRL
80
44
0
09 Jun 2021
Pseudo-supervised Deep Subspace Clustering
Pseudo-supervised Deep Subspace Clustering
Juncheng Lv
Zhao Kang
Xiao Lu
Zenglin Xu
80
115
0
08 Apr 2021
Unsupervised Semantic Aggregation and Deformable Template Matching for
  Semi-Supervised Learning
Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning
Tao Han
Junyu Gao
Yuan. Yuan
Qi. Wang
79
27
0
12 Oct 2020
Deep Goal-Oriented Clustering
Deep Goal-Oriented Clustering
Yifeng Shi
Christopher M. Bender
Junier B. Oliva
Marc Niethammer
23
0
0
07 Jun 2020
An Explicit Local and Global Representation Disentanglement Framework
  with Applications in Deep Clustering and Unsupervised Object Detection
An Explicit Local and Global Representation Disentanglement Framework with Applications in Deep Clustering and Unsupervised Object Detection
Rujikorn Charakorn
Y. Thawornwattana
Sirawaj Itthipuripat
Nick Pawlowski
P. Manoonpong
Nat Dilokthanakul
DRLOCL
59
13
0
24 Jan 2020
Softmax-based Classification is k-means Clustering: Formal Proof,
  Consequences for Adversarial Attacks, and Improvement through Centroid Based
  Tailoring
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring
Sibylle Hess
W. Duivesteijn
Decebal Constantin Mocanu
60
13
0
07 Jan 2020
Disentangling to Cluster: Gaussian Mixture Variational Ladder
  Autoencoders
Disentangling to Cluster: Gaussian Mixture Variational Ladder Autoencoders
M. Willetts
Stephen J. Roberts
Chris Holmes
CoGeDRL
59
16
0
25 Sep 2019
Streaming Adaptive Nonparametric Variational Autoencoder
Streaming Adaptive Nonparametric Variational Autoencoder
Tingting Zhao
Zifeng Wang
A. Masoomi
Jennifer G. Dy
8
2
0
07 Jun 2019
Semi-Unsupervised Learning: Clustering and Classifying using
  Ultra-Sparse Labels
Semi-Unsupervised Learning: Clustering and Classifying using Ultra-Sparse Labels
M. Willetts
Stephen J. Roberts
Christopher C Holmes
36
4
0
24 Jan 2019
Gaussian Mixture Generative Adversarial Networks for Diverse Datasets,
  and the Unsupervised Clustering of Images
Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised Clustering of Images
Matan Ben-Yosef
D. Weinshall
93
54
0
30 Aug 2018
Adversarially Learned Mixture Model
Adversarially Learned Mixture Model
Andrew Jesson
Cécile Low-Kam
Tanya Nair
F. Soudan
Florent Chandelier
Nicolas Chapados
20
2
0
14 Jul 2018
Convolutional Embedded Networks for Population Scale Clustering and
  Bio-ancestry Inferencing
Convolutional Embedded Networks for Population Scale Clustering and Bio-ancestry Inferencing
Md. Rezaul Karim
Michael Cochez
Achille Zappa
Ratnesh Sahay
Oya Beyan
Dietrich-Rebholz Schuhmann
Stefan Decker
8
0
0
30 May 2018
1