ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03487
15
93

Small nonlinearities in activation functions create bad local minima in neural networks

10 February 2018
Chulhee Yun
S. Sra
Ali Jadbabaie
    ODL
ArXivPDFHTML
Abstract

We investigate the loss surface of neural networks. We prove that even for one-hidden-layer networks with "slightest" nonlinearity, the empirical risks have spurious local minima in most cases. Our results thus indicate that in general "no spurious local minima" is a property limited to deep linear networks, and insights obtained from linear networks may not be robust. Specifically, for ReLU(-like) networks we constructively prove that for almost all practical datasets there exist infinitely many local minima. We also present a counterexample for more general activations (sigmoid, tanh, arctan, ReLU, etc.), for which there exists a bad local minimum. Our results make the least restrictive assumptions relative to existing results on spurious local optima in neural networks. We complete our discussion by presenting a comprehensive characterization of global optimality for deep linear networks, which unifies other results on this topic.

View on arXiv
Comments on this paper