ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Communities
  3. ODL

Optimization for Deep Learning

ODL
More data

Develops efficient optimization algorithms for training deep models. Improves convergence speed and model performance.

Neighbor communities

51015

Featured Papers

0 / 0 papers shown
Title

All papers

50 / 1,060 papers shown
Title
Gradient-Variation Online Adaptivity for Accelerated Optimization with Hölder Smoothness
Gradient-Variation Online Adaptivity for Accelerated Optimization with Hölder Smoothness
Yuheng Zhao
Yu-Hu Yan
Kfir Yehuda Levy
Peng Zhao
ODL
72
2
0
04 Nov 2025
Domain decomposition architectures and Gauss-Newton training for physics-informed neural networks
Domain decomposition architectures and Gauss-Newton training for physics-informed neural networks
Alexander Heinlein
Taniya Kapoor
ODL
76
0
0
30 Oct 2025
On the Stability of Neural Networks in Deep Learning
On the Stability of Neural Networks in Deep Learning
Blaise Delattre
ODLAAML
127
0
0
29 Oct 2025
How do simple rotations affect the implicit bias of Adam?
How do simple rotations affect the implicit bias of Adam?
Adela DePavia
Vasileios Charisopoulos
Rebecca Willett
ODL
122
0
0
27 Oct 2025
Connectome-Guided Automatic Learning Rates for Deep Networks
Connectome-Guided Automatic Learning Rates for Deep Networks
Peilin He
Tananun Songdechakraiwut
ODLOOD
143
0
0
27 Oct 2025
Towards Deep Physics-Informed Kolmogorov-Arnold Networks
Towards Deep Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas
Fotios Anagnostopoulos
M. Papachristou
Georgios Alexandridis
ODLAI4CE
140
0
0
27 Oct 2025
Randomness and Interpolation Improve Gradient Descent
Randomness and Interpolation Improve Gradient DescentInternational Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2024
Jiawen Li
Pascal Lefevre
Anwar PP Abdul Majeed
ODL
85
0
0
14 Oct 2025
Nonlinear discretizations and Newton's method: characterizing stationary points of regression objectives
Nonlinear discretizations and Newton's method: characterizing stationary points of regression objectives
Conor Rowan
ODL
100
0
0
13 Oct 2025
Preconditioned Norms: A Unified Framework for Steepest Descent, Quasi-Newton and Adaptive Methods
Preconditioned Norms: A Unified Framework for Steepest Descent, Quasi-Newton and Adaptive Methods
Andrey Veprikov
Arman Bolatov
Samuel Horváth
Aleksandr Beznosikov
Martin Takáč
Slavomír Hanzely
ODL
148
0
0
12 Oct 2025
AutoGD: Automatic Learning Rate Selection for Gradient Descent
AutoGD: Automatic Learning Rate Selection for Gradient Descent
Nikola Surjanovic
Alexandre Bouchard-Côté
Trevor Campbell
ODL
63
0
0
10 Oct 2025
Convergence of optimizers implies eigenvalues filtering at equilibrium
Convergence of optimizers implies eigenvalues filtering at equilibrium
Jérôme Bolte
Quoc-Tung Le
Edouard Pauwels
ODL
120
1
0
10 Oct 2025
Closed-Form Last Layer Optimization
Closed-Form Last Layer Optimization
Alexandre Galashov
Nathael Da Costa
Liyuan Xu
Philipp Hennig
Arthur Gretton
ODL
84
0
0
06 Oct 2025
Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
Kristi Topollai
A. Choromańska
ODL
136
0
0
06 Oct 2025
Explore the Loss space with Hill-ADAM
Explore the Loss space with Hill-ADAM
Meenakshi Manikandan
Leilani Gilpin
ODL
89
0
0
04 Oct 2025
PENEX: AdaBoost-Inspired Neural Network Regularization
PENEX: AdaBoost-Inspired Neural Network Regularization
Klaus-Rudolf Kladny
Bernhard Schölkopf
Michael Muehlebach
ODL
164
0
0
02 Oct 2025
Stochastic Adaptive Gradient Descent Without Descent
Stochastic Adaptive Gradient Descent Without Descent
Jean-François Aujol
Jérémie Bigot
Camille Castera
ODL
88
1
0
18 Sep 2025
Learning Neural Networks by Neuron Pursuit
Learning Neural Networks by Neuron Pursuit
Akshay Kumar
Jarvis Haupt
ODL
63
0
0
15 Sep 2025
Gradient Methods with Online Scaling Part II. Practical Aspects
Gradient Methods with Online Scaling Part II. Practical Aspects
Ya-Chi Chu
Wenzhi Gao
Yinyu Ye
Madeleine Udell
ODL
162
0
0
13 Sep 2025
Depth-Aware Initialization for Stable and Efficient Neural Network Training
Depth-Aware Initialization for Stable and Efficient Neural Network Training
Vijay Pandey
ODL
101
0
0
05 Sep 2025
Optimized Weight Initialization on the Stiefel Manifold for Deep ReLU Neural Networks
Optimized Weight Initialization on the Stiefel Manifold for Deep ReLU Neural Networks
Hyungu Lee
Taehyeong Kim
Hayoung Choi
ODL
99
0
0
30 Aug 2025
Flatness-aware Curriculum Learning via Adversarial Difficulty
Flatness-aware Curriculum Learning via Adversarial Difficulty
Hiroaki Aizawa
Yoshikazu Hayashi
ODL
80
0
0
26 Aug 2025
ANO : Faster is Better in Noisy Landscape
ANO : Faster is Better in Noisy Landscape
Adrien Kegreisz
ODL
184
0
0
25 Aug 2025
Enhanced NIRMAL Optimizer With Damped Nesterov Acceleration: A Comparative Analysis
Enhanced NIRMAL Optimizer With Damped Nesterov Acceleration: A Comparative Analysis
Nirmal Gaud
Prasad Krishna Murthy
Mostaque Md. Morshedur Hassan
Abhijit Ganguly
Vinay Mali
Ms Lalita Bhagwat Randive
Abhaypratap Singh
ODL
91
0
0
22 Aug 2025
Fisher-Orthogonal Projection Methods for Natural Gradient Descent with Large Batches
Fisher-Orthogonal Projection Methods for Natural Gradient Descent with Large Batches
Yishun Lu
Wesley Armour
ODL
157
1
0
19 Aug 2025
Kourkoutas-Beta: A Sunspike-Driven Adam Optimizer with Desert Flair
Kourkoutas-Beta: A Sunspike-Driven Adam Optimizer with Desert Flair
Stavros C. Kassinos
ODL
137
0
0
18 Aug 2025
Adaptive Batch Size and Learning Rate Scheduler for Stochastic Gradient Descent Based on Minimization of Stochastic First-order Oracle Complexity
Adaptive Batch Size and Learning Rate Scheduler for Stochastic Gradient Descent Based on Minimization of Stochastic First-order Oracle Complexity
Hikaru Umeda
Hideaki Iiduka
ODL
78
0
0
07 Aug 2025
ZetA: A Riemann Zeta-Scaled Extension of Adam for Deep Learning
ZetA: A Riemann Zeta-Scaled Extension of Adam for Deep Learning
Samiksha BC
ODL
72
0
0
01 Aug 2025
Dual Adaptivity: Universal Algorithms for Minimizing the Adaptive Regret of Convex Functions
Dual Adaptivity: Universal Algorithms for Minimizing the Adaptive Regret of Convex Functions
Lijun Zhang
Wenhao Yang
Guanghui Wang
Wei Jiang
Zhi Zhou
ODL
49
0
0
01 Aug 2025
Principled Curriculum Learning using Parameter Continuation Methods
Principled Curriculum Learning using Parameter Continuation Methods
Harsh Nilesh Pathak
Randy Paffenroth
ODL
101
1
0
29 Jul 2025
Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
Dimer-Enhanced Optimization: A First-Order Approach to Escaping Saddle Points in Neural Network Training
Yue Hu
Zanxia Cao
Yingchao Liu
ODL
114
1
0
26 Jul 2025
Recursive Bound-Constrained AdaGrad with Applications to Multilevel and Domain Decomposition Minimization
Recursive Bound-Constrained AdaGrad with Applications to Multilevel and Domain Decomposition Minimization
Serge Gratton
Alena Kopaničáková
Philippe Toint
ODL
124
1
0
15 Jul 2025
Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding
Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding
Qi Feng
Yihong Liu
Hinrich Schütze
ODL
70
2
0
13 Jul 2025
An Adaptive Volatility-based Learning Rate Scheduler
An Adaptive Volatility-based Learning Rate Scheduler
Kieran Chai Kai Ren
ODL
67
0
0
11 Jul 2025
PDE-aware Optimizer for Physics-informed Neural Networks
PDE-aware Optimizer for Physics-informed Neural Networks
Hardik Shukla
Manurag Khullar
Vismay Churiwala
ODL
66
0
0
10 Jul 2025
SoftSignSGD(S3): An Enhanced Optimizer for Practical DNN Training and Loss Spikes Minimization Beyond Adam
SoftSignSGD(S3): An Enhanced Optimizer for Practical DNN Training and Loss Spikes Minimization Beyond Adam
Hanyang Peng
Shuang Qin
Yue Yu
Fangqing Jiang
Hui Wang
Wen Gao
ODL
73
1
0
09 Jul 2025
On the algorithmic construction of deep ReLU networks
On the algorithmic construction of deep ReLU networks
Daan Huybrechs
ODL
144
0
0
23 Jun 2025
Hindsight-Guided Momentum (HGM) Optimizer: An Approach to Adaptive Learning Rate
Hindsight-Guided Momentum (HGM) Optimizer: An Approach to Adaptive Learning Rate
Krisanu Sarkar
ODL
81
0
0
22 Jun 2025
PyLO: Towards Accessible Learned Optimizers in PyTorch
PyLO: Towards Accessible Learned Optimizers in PyTorch
Vaibhav Singh
Benjamin Thérien
Quentin G. Anthony
Xiaolong Huang
A. Moudgil
Eugene Belilovsky
ODLAI4CE
338
0
0
12 Jun 2025
MAC: An Efficient Gradient Preconditioning using Mean Activation Approximated Curvature
Hyunseok Seung
Jaewoo Lee
Hyunsuk Ko
ODL
121
1
0
10 Jun 2025
NysAct: A Scalable Preconditioned Gradient Descent using Nystrom ApproximationBigData Congress [Services Society] (BSS), 2024
Hyunseok Seung
Jaewoo Lee
Hyunsuk Ko
ODL
133
0
0
10 Jun 2025
An Adaptive Method Stabilizing Activations for Enhanced Generalization
Hyunseok Seung
Jaewoo Lee
Hyunsuk Ko
ODL
146
0
0
10 Jun 2025
On the Stability of the Jacobian Matrix in Deep Neural Networks
Benjamin Dadoun
Soufiane Hayou
Hanan Salam
Abdalgader Abubaker
Pierre Youssef
ODL
134
0
0
10 Jun 2025
Adaptive Preconditioners Trigger Loss Spikes in Adam
Zhiwei Bai
Zhangchen Zhou
Jiajie Zhao
Xiaolong Li
Zhiyu Li
Feiyu Xiong
Hongkang Yang
Yaoyu Zhang
Z. Xu
ODL
192
0
0
05 Jun 2025
KOALA++: Efficient Kalman-Based Optimization with Gradient-Covariance Products
KOALA++: Efficient Kalman-Based Optimization with Gradient-Covariance Products
Zixuan Xia
A. Davtyan
Paolo Favaro
ODL
231
0
0
04 Jun 2025
PADAM: Parallel averaged Adam reduces the error for stochastic optimization in scientific machine learning
PADAM: Parallel averaged Adam reduces the error for stochastic optimization in scientific machine learning
Arnulf Jentzen
Julian Kranz
Adrian Riekert
ODL
179
0
0
28 May 2025
Saddle-To-Saddle Dynamics in Deep ReLU Networks: Low-Rank Bias in the First Saddle Escape
Saddle-To-Saddle Dynamics in Deep ReLU Networks: Low-Rank Bias in the First Saddle Escape
Ioannis Bantzis
James B. Simon
Arthur Jacot
ODL
176
1
0
27 May 2025
One-Time Soft Alignment Enables Resilient Learning without Weight Transport
One-Time Soft Alignment Enables Resilient Learning without Weight Transport
Jeonghwan Cheon
Jaehyuk Bae
Se-Bum Paik
ODL
205
2
0
27 May 2025
AdamS: Momentum Itself Can Be A Normalizer for LLM Pretraining and Post-training
AdamS: Momentum Itself Can Be A Normalizer for LLM Pretraining and Post-training
Huishuai Zhang
Bohan Wang
Luoxin Chen
ODL
336
0
0
22 May 2025
KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches
KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches
Mingquan Feng
Yixin Huang
Yifan Fu
Shaobo Wang
Junchi Yan
ODL
89
0
0
20 May 2025
Self Distillation via Iterative Constructive Perturbations
Self Distillation via Iterative Constructive Perturbations
Maheak Dave
Aniket K. Singh
Aryan Pareek
Harshita Jha
Debasis Chaudhuri
Manish P. Singh
ODL
112
0
0
20 May 2025
Loading #Papers per Month with "ODL"
Past speakers
Name (-)
Top Contributors
Name (-)
Top Organizations at ResearchTrend.AI
Name (-)
Social Events
DateLocationEvent
No social events available