ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.23501
84
0

Towards Deep Physics-Informed Kolmogorov-Arnold Networks

27 October 2025
Spyros Rigas
Fotios Anagnostopoulos
M. Papachristou
Georgios Alexandridis
    ODLAI4CE
ArXiv (abs)PDFHTMLGithub
Main:64 Pages
22 Figures
Bibliography:9 Pages
24 Tables
Abstract

Since their introduction, Kolmogorov-Arnold Networks (KANs) have been successfully applied across several domains, with physics-informed machine learning (PIML) emerging as one of the areas where they have thrived. In the PIML setting, Chebyshev-based physics-informed KANs (cPIKANs) have become the standard due to their computational efficiency. However, like their multilayer perceptron-based counterparts, cPIKANs face significant challenges when scaled to depth, leading to training instabilities that limit their applicability to several PDE problems. To address this, we propose a basis-agnostic, Glorot-like initialization scheme that preserves activation variance and yields substantial improvements in stability and accuracy over the default initialization of cPIKANs. Inspired by the PirateNet architecture, we further introduce Residual-Gated Adaptive KANs (RGA KANs), designed to mitigate divergence in deep cPIKANs where initialization alone is not sufficient. Through empirical tests and information bottleneck analysis, we show that RGA KANs successfully traverse all training phases, unlike baseline cPIKANs, which stagnate in the diffusion phase in specific PDE settings. Evaluations on seven standard forward PDE benchmarks under a fixed training pipeline with adaptive components demonstrate that RGA KANs consistently outperform parameter-matched cPIKANs and PirateNets - often by several orders of magnitude - while remaining stable in settings where the others diverge.

View on arXiv
Comments on this paper