ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03769
  4. Cited By
Learning Deep Convolutional Networks for Demosaicing

Learning Deep Convolutional Networks for Demosaicing

11 February 2018
Nai-Sheng Syu
Yu-Sheng Chen
Yung-Yu Chuang
ArXivPDFHTML

Papers citing "Learning Deep Convolutional Networks for Demosaicing"

5 / 5 papers shown
Title
DeFiNES: Enabling Fast Exploration of the Depth-first Scheduling Space
  for DNN Accelerators through Analytical Modeling
DeFiNES: Enabling Fast Exploration of the Depth-first Scheduling Space for DNN Accelerators through Analytical Modeling
L. Mei
Koen Goetschalckx
Arne Symons
Marian Verhelst
36
28
0
10 Dec 2022
Joint Demosaicking and Denoising in the Wild: The Case of Training Under
  Ground Truth Uncertainty
Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty
Jierun Chen
Song Wen
Shueng-Han Gary Chan
22
16
0
12 Jan 2021
INTEL-TAU: A Color Constancy Dataset
INTEL-TAU: A Color Constancy Dataset
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Jarno Nikkanen
M. Gabbouj
12
38
0
23 Oct 2019
Deep Camera: A Fully Convolutional Neural Network for Image Signal
  Processing
Deep Camera: A Fully Convolutional Neural Network for Image Signal Processing
Sivalogeswaran Ratnasingam
20
41
0
24 Aug 2019
Content Authentication for Neural Imaging Pipelines: End-to-end
  Optimization of Photo Provenance in Complex Distribution Channels
Content Authentication for Neural Imaging Pipelines: End-to-end Optimization of Photo Provenance in Complex Distribution Channels
Pawel Korus
N. Memon
18
13
0
04 Dec 2018
1