ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03806
  4. Cited By
ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error
  Resilience for Energy Efficient Deep Neural Network Accelerators

ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Neural Network Accelerators

11 February 2018
Jeff Zhang
Kartheek Rangineni
Zahra Ghodsi
S. Garg
ArXivPDFHTML

Papers citing "ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Neural Network Accelerators"

16 / 16 papers shown
Title
Shavette: Low Power Neural Network Acceleration via Algorithm-level Error Detection and Undervolting
Shavette: Low Power Neural Network Acceleration via Algorithm-level Error Detection and Undervolting
Mikael Rinkinen
Lauri Koskinen
O. Silvén
Mehdi Safarpour
23
0
0
17 Oct 2024
Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications
Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications
Vasileios Leon
Muhammad Abdullah Hanif
Giorgos Armeniakos
Xun Jiao
Muhammad Shafique
K. Pekmestzi
Dimitrios Soudris
29
3
0
20 Jul 2023
CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for
  Energy-Efficient Low-precision Deep Convolutional Neural Networks
CoNLoCNN: Exploiting Correlation and Non-Uniform Quantization for Energy-Efficient Low-precision Deep Convolutional Neural Networks
Muhammad Abdullah Hanif
G. M. Sarda
Alberto Marchisio
Guido Masera
Maurizio Martina
Muhammad Shafique
MQ
8
4
0
31 Jul 2022
enpheeph: A Fault Injection Framework for Spiking and Compressed Deep
  Neural Networks
enpheeph: A Fault Injection Framework for Spiking and Compressed Deep Neural Networks
Alessio Colucci
A. Steininger
Muhammad Shafique
17
12
0
31 Jul 2022
Special Session: Towards an Agile Design Methodology for Efficient,
  Reliable, and Secure ML Systems
Special Session: Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML Systems
Shail Dave
Alberto Marchisio
Muhammad Abdullah Hanif
Amira Guesmi
Aviral Shrivastava
Ihsen Alouani
Muhammad Shafique
28
13
0
18 Apr 2022
Fault-Tolerant Deep Learning: A Hierarchical Perspective
Fault-Tolerant Deep Learning: A Hierarchical Perspective
Cheng Liu
Zhen Gao
Siting Liu
Xuefei Ning
Huawei Li
Xiaowei Li
38
9
0
05 Apr 2022
Winograd Convolution: A Perspective from Fault Tolerance
Winograd Convolution: A Perspective from Fault Tolerance
Xing-xiong Xue
Haitong Huang
Cheng Liu
Ying Wang
Tao Luo
L. Zhang
43
13
0
17 Feb 2022
On the Impact of Device-Level Techniques on Energy-Efficiency of Neural
  Network Accelerators
On the Impact of Device-Level Techniques on Energy-Efficiency of Neural Network Accelerators
Seyed Morteza Nabavinejad
Behzad Salami
10
1
0
26 Jun 2021
Arithmetic-Intensity-Guided Fault Tolerance for Neural Network Inference
  on GPUs
Arithmetic-Intensity-Guided Fault Tolerance for Neural Network Inference on GPUs
J. Kosaian
K. V. Rashmi
22
33
0
19 Apr 2021
Robust Machine Learning Systems: Challenges, Current Trends,
  Perspectives, and the Road Ahead
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Muhammad Shafique
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
75
100
0
04 Jan 2021
Artificial Neural Networks and Fault Injection Attacks
Artificial Neural Networks and Fault Injection Attacks
Shahin Tajik
F. Ganji
SILM
11
10
0
17 Aug 2020
FT-CNN: Algorithm-Based Fault Tolerance for Convolutional Neural
  Networks
FT-CNN: Algorithm-Based Fault Tolerance for Convolutional Neural Networks
Kai Zhao
Sheng Di
Sihuan Li
Xin Liang
Yujia Zhai
Jieyang Chen
Kaiming Ouyang
Franck Cappello
Zizhong Chen
14
80
0
27 Mar 2020
Co-Exploration of Neural Architectures and Heterogeneous ASIC
  Accelerator Designs Targeting Multiple Tasks
Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks
Lei Yang
Zheyu Yan
Meng Li
Hyoukjun Kwon
Liangzhen Lai
T. Krishna
Vikas Chandra
Weiwen Jiang
Yiyu Shi
16
114
0
10 Feb 2020
Device-Circuit-Architecture Co-Exploration for Computing-in-Memory
  Neural Accelerators
Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators
Weiwen Jiang
Qiuwen Lou
Zheyu Yan
Lei Yang
J. Hu
X. S. Hu
Yiyu Shi
11
71
0
31 Oct 2019
On the Resilience of RTL NN Accelerators: Fault Characterization and
  Mitigation
On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation
Behzad Salami
O. Unsal
A. Cristal
17
66
0
14 Jun 2018
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1