ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05570
  4. Cited By
Optimal Transport: Fast Probabilistic Approximation with Exact Solvers
v1v2v3v4 (latest)

Optimal Transport: Fast Probabilistic Approximation with Exact Solvers

14 February 2018
Max Sommerfeld
Jörn Schrieber
Y. Zemel
Axel Munk
    OT
ArXiv (abs)PDFHTML

Papers citing "Optimal Transport: Fast Probabilistic Approximation with Exact Solvers"

17 / 17 papers shown
Title
Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
Schrödinger Bridge Matching for Tree-Structured Costs and Entropic Wasserstein Barycentres
Samuel Howard
Peter Potaptchik
George Deligiannidis
OT
112
0
0
20 Jun 2025
Document-Level Text Generation with Minimum Bayes Risk Decoding using Optimal Transport
Document-Level Text Generation with Minimum Bayes Risk Decoding using Optimal Transport
Yuu Jinnai
OT
103
0
0
29 May 2025
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Jixing Xu
Zhen Peng
Jiecheng Guo
220
3
0
27 Jun 2024
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
195
5
0
26 Aug 2023
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OODOT
166
57
0
28 Jun 2023
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
183
27
0
10 Jun 2022
Empirical Optimal Transport between Different Measures Adapts to Lower
  Complexity
Empirical Optimal Transport between Different Measures Adapts to Lower Complexity
Shayan Hundrieser
Thomas Staudt
Axel Munk
OT
105
28
0
21 Feb 2022
Universal Approximation Under Constraints is Possible with Transformers
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
198
32
0
07 Oct 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
117
162
0
05 Mar 2021
Improving Approximate Optimal Transport Distances using Quantization
Improving Approximate Optimal Transport Distances using Quantization
Gaspard Beugnot
Aude Genevay
Kristjan Greenewald
Justin Solomon
OTMQ
499
11
0
25 Feb 2021
On Transportation of Mini-batches: A Hierarchical Approach
On Transportation of Mini-batches: A Hierarchical ApproachInternational Conference on Machine Learning (ICML), 2024
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
142
19
0
11 Feb 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
156
63
0
05 Jan 2021
Randomised Wasserstein Barycenter Computation: Resampling with
  Statistical Guarantees
Randomised Wasserstein Barycenter Computation: Resampling with Statistical Guarantees
F. Heinemann
Axel Munk
Y. Zemel
110
18
0
11 Dec 2020
Representation Transfer by Optimal Transport
Representation Transfer by Optimal Transport
Xuhong Li
Yves Grandvalet
Rémi Flamary
Nicolas Courty
Dejing Dou
OT
87
8
0
13 Jul 2020
Learning with minibatch Wasserstein : asymptotic and gradient properties
Learning with minibatch Wasserstein : asymptotic and gradient properties
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
174
100
0
09 Oct 2019
Empirical Regularized Optimal Transport: Statistical Theory and
  Applications
Empirical Regularized Optimal Transport: Statistical Theory and Applications
M. Klatt
Carla Tameling
Axel Munk
OT
151
64
0
23 Oct 2018
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Edouard Grave
Armand Joulin
Quentin Berthet
143
204
0
29 May 2018
1