Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05668
Cited By
Model compression via distillation and quantization
15 February 2018
A. Polino
Razvan Pascanu
Dan Alistarh
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model compression via distillation and quantization"
50 / 133 papers shown
Title
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment
Weixin Xu
Zipeng Feng
Shuangkang Fang
Song Yuan
Yi Yang
Shuchang Zhou
MQ
24
1
0
01 Nov 2021
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for Efficient Distillation
Sumanth Chennupati
Mohammad Mahdi Kamani
Zhongwei Cheng
Lin Chen
21
4
0
19 Oct 2021
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
28
46
0
11 Oct 2021
Auto-Split: A General Framework of Collaborative Edge-Cloud AI
Amin Banitalebi-Dehkordi
Naveen Vedula
J. Pei
Fei Xia
Lanjun Wang
Yong Zhang
22
89
0
30 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
24
100
0
10 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
24
56
0
29 Jul 2021
Follow Your Path: a Progressive Method for Knowledge Distillation
Wenxian Shi
Yuxuan Song
Hao Zhou
Bohan Li
Lei Li
17
14
0
20 Jul 2021
DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Chaojian Li
Wuyang Chen
Yuchen Gu
Tianlong Chen
Yonggan Fu
Zhangyang Wang
Yingyan Lin
30
0
0
16 Jul 2021
Training Compact CNNs for Image Classification using Dynamic-coded Filter Fusion
Mingbao Lin
Bohong Chen
Fei Chao
Rongrong Ji
VLM
25
23
0
14 Jul 2021
Improving the Efficiency of Transformers for Resource-Constrained Devices
Hamid Tabani
Ajay Balasubramaniam
Shabbir Marzban
Elahe Arani
Bahram Zonooz
33
20
0
30 Jun 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
365
0
16 Jun 2021
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
37
815
0
14 Jun 2021
BoolNet: Minimizing The Energy Consumption of Binary Neural Networks
Nianhui Guo
Joseph Bethge
Haojin Yang
Kai Zhong
Xuefei Ning
Christoph Meinel
Yu Wang
MQ
24
11
0
13 Jun 2021
Rethinking Transfer Learning for Medical Image Classification
Le Peng
Hengyue Liang
Gaoxiang Luo
Taihui Li
Ju Sun
VLM
LM&MA
14
5
0
09 Jun 2021
RBNN: Memory-Efficient Reconfigurable Deep Binary Neural Network with IP Protection for Internet of Things
Huming Qiu
Hua Ma
Zhi-Li Zhang
Yifeng Zheng
Anmin Fu
Pan Zhou
Yansong Gao
Derek Abbott
S. Al-Sarawi
MQ
19
9
0
09 May 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
21
20
0
07 May 2021
Differentiable Model Compression via Pseudo Quantization Noise
Alexandre Défossez
Yossi Adi
Gabriel Synnaeve
DiffM
MQ
15
47
0
20 Apr 2021
Compact CNN Structure Learning by Knowledge Distillation
Waqar Ahmed
Andrea Zunino
Pietro Morerio
Vittorio Murino
27
5
0
19 Apr 2021
"BNN - BN = ?": Training Binary Neural Networks without Batch Normalization
Tianlong Chen
Zhenyu (Allen) Zhang
Xu Ouyang
Zechun Liu
Zhiqiang Shen
Zhangyang Wang
MQ
37
36
0
16 Apr 2021
Training Multi-bit Quantized and Binarized Networks with A Learnable Symmetric Quantizer
Phuoc Pham
J. Abraham
Jaeyong Chung
MQ
33
11
0
01 Apr 2021
Student Network Learning via Evolutionary Knowledge Distillation
Kangkai Zhang
Chunhui Zhang
Shikun Li
Dan Zeng
Shiming Ge
14
83
0
23 Mar 2021
Learnable Companding Quantization for Accurate Low-bit Neural Networks
Kohei Yamamoto
MQ
36
63
0
12 Mar 2021
Environmental Sound Classification on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-Constrained Devices
Md Mohaimenuzzaman
Christoph Bergmeir
I. West
B. Meyer
12
41
0
05 Mar 2021
Diversifying Sample Generation for Accurate Data-Free Quantization
Xiangguo Zhang
Haotong Qin
Yifu Ding
Ruihao Gong
Qing Yan
Renshuai Tao
Yuhang Li
F. Yu
Xianglong Liu
MQ
54
94
0
01 Mar 2021
An Information-Theoretic Justification for Model Pruning
Berivan Isik
Tsachy Weissman
Albert No
86
35
0
16 Feb 2021
SEED: Self-supervised Distillation For Visual Representation
Zhiyuan Fang
Jianfeng Wang
Lijuan Wang
Lei Zhang
Yezhou Yang
Zicheng Liu
SSL
236
190
0
12 Jan 2021
Auto-Agent-Distiller: Towards Efficient Deep Reinforcement Learning Agents via Neural Architecture Search
Y. Fu
Zhongzhi Yu
Yongan Zhang
Yingyan Lin
22
4
0
24 Dec 2020
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
45
286
0
06 Dec 2020
Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression
Cody Blakeney
Xiaomin Li
Yan Yan
Ziliang Zong
46
39
0
05 Dec 2020
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
52
116
0
25 Nov 2020
Auto Graph Encoder-Decoder for Neural Network Pruning
Sixing Yu
Arya Mazaheri
Ali Jannesari
GNN
19
38
0
25 Nov 2020
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
36
15
0
10 Nov 2020
Stochastic Precision Ensemble: Self-Knowledge Distillation for Quantized Deep Neural Networks
Yoonho Boo
Sungho Shin
Jungwook Choi
Wonyong Sung
MQ
22
29
0
30 Sep 2020
TernaryBERT: Distillation-aware Ultra-low Bit BERT
Wei Zhang
Lu Hou
Yichun Yin
Lifeng Shang
Xiao Chen
Xin Jiang
Qun Liu
MQ
25
208
0
27 Sep 2020
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning
Bingbing Li
Zhenglun Kong
Tianyun Zhang
Ji Li
Z. Li
Hang Liu
Caiwen Ding
VLM
24
64
0
17 Sep 2020
Classification of Diabetic Retinopathy Using Unlabeled Data and Knowledge Distillation
Sajjad Abbasi
M. Hajabdollahi
P. Khadivi
N. Karimi
Roshank Roshandel
S. Shirani
S. Samavi
14
18
0
01 Sep 2020
NASB: Neural Architecture Search for Binary Convolutional Neural Networks
Baozhou Zhu
Zaid Al-Ars
P. Hofstee
MQ
24
23
0
08 Aug 2020
Split Computing for Complex Object Detectors: Challenges and Preliminary Results
Yoshitomo Matsubara
Marco Levorato
38
24
0
27 Jul 2020
Tracking-by-Trackers with a Distilled and Reinforced Model
Matteo Dunnhofer
N. Martinel
C. Micheloni
VOT
OffRL
27
4
0
08 Jul 2020
Operation-Aware Soft Channel Pruning using Differentiable Masks
Minsoo Kang
Bohyung Han
AAML
33
138
0
08 Jul 2020
A Sequential Self Teaching Approach for Improving Generalization in Sound Event Recognition
Anurag Kumar
V. Ithapu
17
35
0
30 Jun 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,837
0
09 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators Towards Local and in Time Domain
Weitao Li
Pengfei Xu
Yang Katie Zhao
Haitong Li
Yuan Xie
Yingyan Lin
9
68
0
03 May 2020
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
50
457
0
31 Mar 2020
Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D Object Pose Estimation in Color Images
Juil Sock
Guillermo Garcia-Hernando
Anil Armagan
Tae-Kyun Kim
24
5
0
27 Mar 2020
GAN Compression: Efficient Architectures for Interactive Conditional GANs
Muyang Li
Ji Lin
Yaoyao Ding
Zhijian Liu
Jun-Yan Zhu
Song Han
GAN
22
2
0
19 Mar 2020
Ternary Compression for Communication-Efficient Federated Learning
Jinjin Xu
W. Du
Ran Cheng
Wangli He
Yaochu Jin
MQ
FedML
34
174
0
07 Mar 2020
MeliusNet: Can Binary Neural Networks Achieve MobileNet-level Accuracy?
Joseph Bethge
Christian Bartz
Haojin Yang
Ying Chen
Christoph Meinel
MQ
25
91
0
16 Jan 2020
Noisy Machines: Understanding Noisy Neural Networks and Enhancing Robustness to Analog Hardware Errors Using Distillation
Chuteng Zhou
Prad Kadambi
Matthew Mattina
P. Whatmough
11
35
0
14 Jan 2020
Previous
1
2
3
Next