ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08380
  4. Cited By
On Abruptly-Changing and Slowly-Varying Multiarmed Bandit Problems

On Abruptly-Changing and Slowly-Varying Multiarmed Bandit Problems

23 February 2018
Lai Wei
Vaibhav Srivastava
ArXivPDFHTML

Papers citing "On Abruptly-Changing and Slowly-Varying Multiarmed Bandit Problems"

5 / 5 papers shown
Title
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
9
19
0
04 May 2022
On Slowly-varying Non-stationary Bandits
On Slowly-varying Non-stationary Bandits
Ramakrishnan Krishnamurthy
Médéric Fourmy
9
8
0
25 Oct 2021
Finite-time Analysis of Globally Nonstationary Multi-Armed Bandits
Finite-time Analysis of Globally Nonstationary Multi-Armed Bandits
Junpei Komiyama
Edouard Fouché
Junya Honda
17
5
0
23 Jul 2021
Weighted Linear Bandits for Non-Stationary Environments
Weighted Linear Bandits for Non-Stationary Environments
Yoan Russac
Claire Vernade
Olivier Cappé
77
100
0
19 Sep 2019
Stochastic Surveillance Strategies for Spatial Quickest Detection
Stochastic Surveillance Strategies for Spatial Quickest Detection
Vaibhav Srivastava
Fabio Pasqualetti
Francesco Bullo
31
38
0
12 Oct 2012
1