ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08667
  4. Cited By
De-Biased Machine Learning of Global and Local Parameters Using
  Regularized Riesz Representers

De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers

23 February 2018
Victor Chernozhukov
Whitney Newey
Rahul Singh
ArXivPDFHTML

Papers citing "De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers"

15 / 15 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Automatic debiasing of neural networks via moment-constrained learning
Automatic debiasing of neural networks via moment-constrained learning
Christian L. Hines
Oliver J. Hines
CML
OOD
31
0
0
29 Sep 2024
Orthogonal Causal Calibration
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
114
1
0
04 Jun 2024
Inference on Optimal Dynamic Policies via Softmax Approximation
Inference on Optimal Dynamic Policies via Softmax Approximation
Qizhao Chen
Morgane Austern
Vasilis Syrgkanis
OffRL
25
1
0
08 Mar 2023
Inference on Strongly Identified Functionals of Weakly Identified
  Functions
Inference on Strongly Identified Functionals of Weakly Identified Functions
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
30
15
0
17 Aug 2022
A nonparametric doubly robust test for a continuous treatment effect
A nonparametric doubly robust test for a continuous treatment effect
Charles R. Doss
Guangwei Weng
Lan Wang
I. Moscovice
T. Chantarat
9
1
0
07 Feb 2022
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov
Carlos Cinelli
Whitney Newey
Amit Sharma
Vasilis Syrgkanis
CML
16
35
0
26 Dec 2021
Knowledge Distillation as Semiparametric Inference
Knowledge Distillation as Semiparametric Inference
Tri Dao
G. Kamath
Vasilis Syrgkanis
Lester W. Mackey
14
31
0
20 Apr 2021
Kernel Methods for Causal Functions: Dose, Heterogeneous, and
  Incremental Response Curves
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
OffRL
48
26
0
10 Oct 2020
Localized Debiased Machine Learning: Efficient Inference on Quantile
  Treatment Effects and Beyond
Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
23
25
0
30 Dec 2019
Characterization of parameters with a mixed bias property
Characterization of parameters with a mixed bias property
A. Rotnitzky
Ezequiel Smucler
J. M. Robins
14
65
0
07 Apr 2019
Debiased Inference of Average Partial Effects in Single-Index Models
Debiased Inference of Average Partial Effects in Single-Index Models
David A. Hirshberg
Stefan Wager
CML
16
13
0
06 Nov 2018
Automatic Debiased Machine Learning of Causal and Structural Effects
Automatic Debiased Machine Learning of Causal and Structural Effects
Victor Chernozhukov
Whitney Newey
Rahul Singh
CML
AI4CE
16
103
0
14 Sep 2018
High-Dimensional Econometrics and Regularized GMM
High-Dimensional Econometrics and Regularized GMM
A. Belloni
Victor Chernozhukov
Denis Chetverikov
Christian B. Hansen
Kengo Kato
24
67
0
05 Jun 2018
Hypothesis Testing in High-Dimensional Regression under the Gaussian
  Random Design Model: Asymptotic Theory
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
Adel Javanmard
Andrea Montanari
99
160
0
17 Jan 2013
1