Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.09210
Cited By
A representer theorem for deep neural networks
26 February 2018
M. Unser
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A representer theorem for deep neural networks"
24 / 24 papers shown
Title
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons
Farhad Pourkamali-Anaraki
38
5
0
16 Sep 2024
Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
Michael Unser
Alexis Goujon
Stanislas Ducotterd
31
2
0
23 Aug 2024
Parseval Convolution Operators and Neural Networks
Michael Unser
Stanislas Ducotterd
25
3
0
19 Aug 2024
On the Geometry of Deep Learning
Randall Balestriero
Ahmed Imtiaz Humayun
Richard G. Baraniuk
AI4CE
47
1
0
09 Aug 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
82
2
0
29 Apr 2024
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
19
26
0
22 Nov 2022
Duality for Neural Networks through Reproducing Kernel Banach Spaces
L. Spek
T. J. Heeringa
Felix L. Schwenninger
C. Brune
21
13
0
09 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Real Image Super-Resolution using GAN through modeling of LR and HR process
Rao Muhammad Umer
C. Micheloni
40
1
0
19 Oct 2022
Sparse Deep Neural Network for Nonlinear Partial Differential Equations
Yuesheng Xu
T. Zeng
33
5
0
27 Jul 2022
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
44
13
0
17 Jun 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
21
15
0
03 Mar 2022
A Data-Augmentation Is Worth A Thousand Samples: Exact Quantification From Analytical Augmented Sample Moments
Randall Balestriero
Ishan Misra
Yann LeCun
35
20
0
16 Feb 2022
Measuring Complexity of Learning Schemes Using Hessian-Schatten Total Variation
Shayan Aziznejad
Joaquim Campos
M. Unser
24
9
0
12 Dec 2021
Training Neural Networks for Solving 1-D Optimal Piecewise Linear Approximation
Hangcheng Dong
Jing-Xiao Liao
Yan Wang
Yixin Chen
Bingguo Liu
Dong Ye
Guodong Liu
87
0
0
14 Oct 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi
Robert D. Nowak
MLT
38
70
0
07 May 2021
Fast Jacobian-Vector Product for Deep Networks
Randall Balestriero
Richard Baraniuk
31
4
0
01 Apr 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
36
29
0
11 Dec 2020
Native Banach spaces for splines and variational inverse problems
M. Unser
Julien Fageot
16
17
0
24 Apr 2019
A unifying representer theorem for inverse problems and machine learning
M. Unser
13
69
0
02 Mar 2019
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min-Bin Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
57
1,394
0
22 Jun 2018
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
31
78
0
17 May 2018
1