Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.00094
Cited By
Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions
28 February 2018
Quynh N. Nguyen
Mahesh Chandra Mukkamala
Matthias Hein
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Networks Should Be Wide Enough to Learn Disconnected Decision Regions"
11 / 11 papers shown
Title
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
96
33
0
29 Apr 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
34
22
0
24 Feb 2023
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
64
30
0
04 Apr 2022
Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size
Christoph Hertrich
M. Skutella
52
21
0
28 May 2020
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
40
328
0
21 May 2019
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
Asifullah Khan
A. Sohail
Umme Zahoora
Aqsa Saeed Qureshi
OOD
65
2,271
0
17 Jan 2019
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
28
117
0
17 Oct 2018
Empirical Bounds on Linear Regions of Deep Rectifier Networks
Thiago Serra
Srikumar Ramalingam
8
42
0
08 Oct 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
326
5,847
0
08 Jul 2016
Benefits of depth in neural networks
Matus Telgarsky
155
603
0
14 Feb 2016
1