ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00149
19
19

Deep Learning for Causal Inference

1 March 2018
V. Ramachandra
    CML
    BDL
ArXivPDFHTML
Abstract

In this paper, we propose deep learning techniques for econometrics, specifically for causal inference and for estimating individual as well as average treatment effects. The contribution of this paper is twofold: 1. For generalized neighbor matching to estimate individual and average treatment effects, we analyze the use of autoencoders for dimensionality reduction while maintaining the local neighborhood structure among the data points in the embedding space. This deep learning based technique is shown to perform better than simple k nearest neighbor matching for estimating treatment effects, especially when the data points have several features/covariates but reside in a low dimensional manifold in high dimensional space. We also observe better performance than manifold learning methods for neighbor matching. 2. Propensity score matching is one specific and popular way to perform matching in order to estimate average and individual treatment effects. We propose the use of deep neural networks (DNNs) for propensity score matching, and present a network called PropensityNet for this. This is a generalization of the logistic regression technique traditionally used to estimate propensity scores and we show empirically that DNNs perform better than logistic regression at propensity score matching. Code for both methods will be made available shortly on Github at: https://github.com/vikas84bf

View on arXiv
Comments on this paper