ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00404
  4. Cited By
Deep Defense: Training DNNs with Improved Adversarial Robustness

Deep Defense: Training DNNs with Improved Adversarial Robustness

23 February 2018
Ziang Yan
Yiwen Guo
Changshui Zhang
    AAML
ArXivPDFHTML

Papers citing "Deep Defense: Training DNNs with Improved Adversarial Robustness"

13 / 13 papers shown
Title
Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
Nicolas Atienza
Christophe Labreuche
Johanne Cohen
Michele Sebag
OODD
AAML
101
0
0
20 Jan 2025
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
11
11
0
29 Sep 2023
Dendritic Integration Based Quadratic Neural Networks Outperform
  Traditional Aritificial Ones
Dendritic Integration Based Quadratic Neural Networks Outperform Traditional Aritificial Ones
Chongmin Liu
Songting Li
Douglas Zhou
11
0
0
25 May 2023
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities:
  Robustness, Safety, and Generalizability
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability
Mengdi Xu
Zuxin Liu
Peide Huang
Wenhao Ding
Zhepeng Cen
Bo-wen Li
Ding Zhao
64
45
0
16 Sep 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
16
0
0
17 Aug 2022
Deadwooding: Robust Global Pruning for Deep Neural Networks
Deadwooding: Robust Global Pruning for Deep Neural Networks
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
9
4
0
10 Feb 2022
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
192
345
0
15 Dec 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A
  Survey for Machine Learning Security to Securing Machine Learning for CPS
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
29
131
0
14 Feb 2021
Contextual Fusion For Adversarial Robustness
Contextual Fusion For Adversarial Robustness
Aiswarya Akumalla
S. Haney
M. Bazhenov
AAML
11
1
0
18 Nov 2020
On Robustness of Neural Ordinary Differential Equations
On Robustness of Neural Ordinary Differential Equations
Hanshu Yan
Jiawei Du
Vincent Y. F. Tan
Jiashi Feng
OOD
13
138
0
12 Oct 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
13
230
0
24 Jul 2019
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,108
0
04 Nov 2016
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
243
7,620
0
03 Jul 2012
1