Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.01425
Cited By
On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box Optimization Benchmark Problems
4 March 2018
Carola Doerr
Markus Wagner
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Effectiveness of Simple Success-Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box Optimization Benchmark Problems"
7 / 7 papers shown
Title
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
138
112
0
07 Jul 2020
Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm
Arina Buzdalova
Carola Doerr
A. Rodionova
25
3
0
19 Jun 2020
A Reinforcement Learning Perspective on the Optimal Control of Mutation Probabilities for the (1+1) Evolutionary Algorithm: First Results on the OneMax Problem
Luca Mossina
Emmanuel Rachelson
D. Delahaye
13
0
0
09 May 2019
Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates
A. Rodionova
Kirill Antonov
Arina Buzdalova
Carola Doerr
44
13
0
17 Apr 2019
Maximizing Drift is Not Optimal for Solving OneMax
Nathan Buskulic
Carola Doerr
53
23
0
16 Apr 2019
Self-Adjusting Mutation Rates with Provably Optimal Success Rules
Benjamin Doerr
Carola Doerr
Johannes Lengler
161
50
0
07 Feb 2019
Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation
Furong Ye
Carola Doerr
Thomas Bäck
66
24
0
17 Jan 2019
1