ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04271
  4. Cited By
Super-resolution of Sentinel-2 images: Learning a globally applicable
  deep neural network

Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network

12 March 2018
Charis Lanaras
J. Bioucas-Dias
S. Galliani
E. Baltsavias
Konrad Schindler
ArXivPDFHTML

Papers citing "Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network"

8 / 8 papers shown
Title
Cross-sensor super-resolution of irregularly sampled Sentinel-2 time
  series
Cross-sensor super-resolution of irregularly sampled Sentinel-2 time series
Aimi Okabayashi
Nicolas Audebert
Simon Donike
Charlotte Pelletier
30
1
0
25 Apr 2024
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
20
31
0
11 Apr 2023
On The Role of Alias and Band-Shift for Sentinel-2 Super-Resolution
On The Role of Alias and Band-Shift for Sentinel-2 Super-Resolution
N. Nguyen
J. Anger
Lara Raad
B. Galerne
Gabriele Facciolo
11
5
0
22 Feb 2023
MuS2: A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
MuS2: A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
Paweł Kowaleczko
Tomasz Tarasiewicz
Maciej Ziaja
Daniel Kostrzewa
J. Nalepa
Przemyslaw Rokita
M. Kawulok
SupR
37
17
0
06 Oct 2022
Graph Neural Networks Extract High-Resolution Cultivated Land Maps from
  Sentinel-2 Image Series
Graph Neural Networks Extract High-Resolution Cultivated Land Maps from Sentinel-2 Image Series
Lukasz Tulczyjew
M. Kawulok
Nicolas Longépé
Bertrand Le Saux
J. Nalepa
13
14
0
03 Aug 2022
Super-Resolution Appearance Transfer for 4D Human Performances
Super-Resolution Appearance Transfer for 4D Human Performances
Marco Pesavento
M. Volino
A. Hilton
3DH
SupR
24
2
0
31 Aug 2021
SIPSA-Net: Shift-Invariant Pan Sharpening with Moving Object Alignment
  for Satellite Imagery
SIPSA-Net: Shift-Invariant Pan Sharpening with Moving Object Alignment for Satellite Imagery
Jaehyup Lee
S. Seo
Munchurl Kim
25
27
0
06 May 2021
S3: A Spectral-Spatial Structure Loss for Pan-Sharpening Networks
S3: A Spectral-Spatial Structure Loss for Pan-Sharpening Networks
Jae-Seok Choi
Yongwoo Kim
Munchurl Kim
6
15
0
13 Jun 2019
1