ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.09544
  4. Cited By
A General Path-Based Representation for Predicting Program Properties
v1v2v3 (latest)

A General Path-Based Representation for Predicting Program Properties

26 March 2018
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
ArXiv (abs)PDFHTML

Papers citing "A General Path-Based Representation for Predicting Program Properties"

50 / 56 papers shown
Title
ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding
ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation GroundingInternational Conference on Learning Representations (ICLR), 2025
Indraneil Paul
Haoyi Yang
Goran Glavaš
Kristian Kersting
Iryna Gurevych
AAMLSyDa
242
3
0
27 Mar 2025
MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance
  Optimizations
MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations
Akash Dutta
Ali Jannesari
211
3
0
02 Jul 2024
Abstract Syntax Tree for Programming Language Understanding and
  Representation: How Far Are We?
Abstract Syntax Tree for Programming Language Understanding and Representation: How Far Are We?
Weisong Sun
Chunrong Fang
Yun Miao
Yudu You
Mengzhe Yuan
...
Quanjun Zhang
An Guo
Xiang Chen
Yang Liu
Zhenyu Chen
263
14
0
01 Dec 2023
Epicure: Distilling Sequence Model Predictions into Patterns
Epicure: Distilling Sequence Model Predictions into Patterns
Miltiadis Allamanis
Earl T. Barr
96
0
0
16 Aug 2023
An Exploratory Literature Study on Sharing and Energy Use of Language
  Models for Source Code
An Exploratory Literature Study on Sharing and Energy Use of Language Models for Source CodeInternational Symposium on Empirical Software Engineering and Measurement (ESEM), 2023
Max Hort
Anastasiia Grishina
Leon Moonen
244
8
0
05 Jul 2023
Modelling Concurrency Bugs Using Machine Learning
Modelling Concurrency Bugs Using Machine Learning
Teodor Rares Begu
106
0
0
08 May 2023
Performance Optimization using Multimodal Modeling and Heterogeneous GNN
Performance Optimization using Multimodal Modeling and Heterogeneous GNNIEEE International Symposium on High-Performance Parallel Distributed Computing (HPDC), 2023
Akashnil Dutta
J. Alcaraz
Ali TehraniJamsaz
E. César
A. Sikora
Ali Jannesari
173
12
0
25 Apr 2023
CLAWSAT: Towards Both Robust and Accurate Code Models
CLAWSAT: Towards Both Robust and Accurate Code ModelsIEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2022
Jinghan Jia
Shashank Srikant
Tamara Mitrovska
Chuang Gan
Shiyu Chang
Sijia Liu
Una-May O’Reilly
AAML
219
13
0
21 Nov 2022
Evaluating the Impact of Source Code Parsers on ML4SE Models
Evaluating the Impact of Source Code Parsers on ML4SE Models
I. Utkin
Egor Spirin
Egor Bogomolov
T. Bryksin
ELM
110
7
0
17 Jun 2022
Code-DKT: A Code-based Knowledge Tracing Model for Programming Tasks
Code-DKT: A Code-based Knowledge Tracing Model for Programming TasksEducational Data Mining (EDM), 2022
Yang Shi
Min Chi
Tiffany Barnes
T. Price
AI4Ed
139
33
0
07 Jun 2022
Assessing Project-Level Fine-Tuning of ML4SE Models
Assessing Project-Level Fine-Tuning of ML4SE Models
Egor Bogomolov
Sergey Zhuravlev
Egor Spirin
T. Bryksin
111
8
0
07 Jun 2022
AdaptivePaste: Code Adaptation through Learning Semantics-aware Variable
  Usage Representations
AdaptivePaste: Code Adaptation through Learning Semantics-aware Variable Usage Representations
Xiaoyu Liu
Jinu Jang
Neel Sundaresan
Miltiadis Allamanis
Alexey Svyatkovskiy
247
2
0
23 May 2022
A Survey of Deep Learning Models for Structural Code Understanding
A Survey of Deep Learning Models for Structural Code Understanding
Ruoting Wu
Yuxin Zhang
Qibiao Peng
Liang Chen
Zibin Zheng
200
8
0
03 May 2022
GypSum: Learning Hybrid Representations for Code Summarization
GypSum: Learning Hybrid Representations for Code SummarizationIEEE International Conference on Program Comprehension (ICPC), 2022
Yu Wang
Yu Dong
Xuesong Lu
Aoying Zhou
130
30
0
26 Apr 2022
Assemble Foundation Models for Automatic Code Summarization
Assemble Foundation Models for Automatic Code SummarizationIEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2022
Jian Gu
P. Salza
H. Gall
272
40
0
13 Jan 2022
Precise Learning of Source Code Contextual Semantics via Hierarchical
  Dependence Structure and Graph Attention Networks
Precise Learning of Source Code Contextual Semantics via Hierarchical Dependence Structure and Graph Attention NetworksJournal of Systems and Software (JSS), 2021
Zhehao Zhao
Bo Yang
Ge Li
Huai Liu
Zhi Jin
155
26
0
20 Nov 2021
Code Representation Learning with Prüfer Sequences
Code Representation Learning with Prüfer SequencesAAAI Conference on Artificial Intelligence (AAAI), 2021
Tenzin Jinpa
Yong Gao
142
0
0
14 Nov 2021
A Survey on Machine Learning Techniques for Source Code Analysis
A Survey on Machine Learning Techniques for Source Code Analysis
Tushar Sharma
M. Kechagia
Stefanos Georgiou
Rohit Tiwari
Indira Vats
Hadi Moazen
Federica Sarro
226
72
0
18 Oct 2021
XFL: Naming Functions in Binaries with Extreme Multi-label Learning
XFL: Naming Functions in Binaries with Extreme Multi-label LearningIEEE Symposium on Security and Privacy (IEEE S&P), 2021
James Patrick-Evans
Moritz Dannehl
Johannes Kinder
367
13
0
28 Jul 2021
Multimodal Representation for Neural Code Search
Multimodal Representation for Neural Code Search
Jian Gu
Zimin Chen
Monperrus Martin
151
50
0
02 Jul 2021
Toward Less Hidden Cost of Code Completion with Acceptance and Ranking
  Models
Toward Less Hidden Cost of Code Completion with Acceptance and Ranking ModelsIEEE International Conference on Software Maintenance and Evolution (ICSME), 2021
Jingxuan Li
Rui Huang
Wei Li
Kai-Lang Yao
Weiguo Tan
104
17
0
26 Jun 2021
On using distributed representations of source code for the detection of
  C security vulnerabilities
On using distributed representations of source code for the detection of C security vulnerabilities
D. Coimbra
Sofia Reis
Rui Abreu
Corina Puasuareanu
H. Erdogmus
118
19
0
01 Jun 2021
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from CodeIEEE Working Conference on Mining Software Repositories (MSR), 2021
Egor Spirin
Egor Bogomolov
V. Kovalenko
T. Bryksin
207
16
0
23 Mar 2021
Language-Agnostic Representation Learning of Source Code from Structure
  and Context
Language-Agnostic Representation Learning of Source Code from Structure and ContextInternational Conference on Learning Representations (ICLR), 2021
Daniel Zügner
Tobias Kirschstein
Michele Catasta
J. Leskovec
Stephan Günnemann
189
130
0
21 Mar 2021
Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs
Code Completion by Modeling Flattened Abstract Syntax Trees as GraphsAAAI Conference on Artificial Intelligence (AAAI), 2021
Yanlin Wang
Hui Li
191
93
0
17 Mar 2021
Mining Program Properties From Neural Networks Trained on Source Code
  Embeddings
Mining Program Properties From Neural Networks Trained on Source Code Embeddings
Martina Saletta
C. Ferretti
57
1
0
09 Mar 2021
Learning to Make Compiler Optimizations More Effective
Learning to Make Compiler Optimizations More Effective
Rahim Mammadli
Marija Selakovic
F. Wolf
Michael Pradel
199
18
0
24 Feb 2021
DOBF: A Deobfuscation Pre-Training Objective for Programming Languages
DOBF: A Deobfuscation Pre-Training Objective for Programming LanguagesNeural Information Processing Systems (NeurIPS), 2021
Baptiste Roziere
Marie-Anne Lachaux
Marc Szafraniec
Guillaume Lample
AI4CE
184
161
0
15 Feb 2021
Deep Data Flow Analysis
Deep Data Flow Analysis
Chris Cummins
Hugh Leather
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Michael F. P. O'Boyle
125
6
0
21 Nov 2020
Pointing to Subwords for Generating Function Names in Source Code
Pointing to Subwords for Generating Function Names in Source Code
Shogo Fujita
Hidetaka Kamigaito
Hiroya Takamura
Manabu Okumura
180
2
0
09 Nov 2020
Towards Demystifying Dimensions of Source Code Embeddings
Towards Demystifying Dimensions of Source Code Embeddings
Md Rafiqul Islam Rabin
Arjun Mukherjee
O. Gnawali
Mohammad Amin Alipour
213
21
0
29 Aug 2020
CORAL: COde RepresentAtion Learning with Weakly-Supervised Transformers
  for Analyzing Data Analysis
CORAL: COde RepresentAtion Learning with Weakly-Supervised Transformers for Analyzing Data AnalysisEPJ Data Science (EPJ Data Sci.), 2020
Ashley Ge Zhang
Michael Merrill
Yang Liu
Jeffrey Heer
Tim Althoff
ViT
124
14
0
28 Aug 2020
Static Neural Compiler Optimization via Deep Reinforcement Learning
Static Neural Compiler Optimization via Deep Reinforcement Learning
Rahim Mammadli
Ali Jannesari
F. Wolf
209
37
0
20 Aug 2020
MISIM: A Neural Code Semantics Similarity System Using the Context-Aware
  Semantics Structure
MISIM: A Neural Code Semantics Similarity System Using the Context-Aware Semantics Structure
Fangke Ye
Sheng-Tian Zhou
Anand Venkat
Ryan Marcus
Nesime Tatbul
...
Tim Mattson
Tim Kraska
Pradeep Dubey
Vivek Sarkar
Justin Emile Gottschlich
174
9
0
05 Jun 2020
A Structural Model for Contextual Code Changes
A Structural Model for Contextual Code Changes
Shaked Brody
Uri Alon
Eran Yahav
KELM
228
7
0
27 May 2020
Embedding Java Classes with code2vec: Improvements from Variable
  Obfuscation
Embedding Java Classes with code2vec: Improvements from Variable ObfuscationIEEE Working Conference on Mining Software Repositories (MSR), 2020
Rhys Compton
E. Frank
Panos Patros
Abigail M. Y. Koay
113
68
0
06 Apr 2020
Context-Aware Parse Trees
Context-Aware Parse Trees
Fangke Ye
Sheng-Tian Zhou
Anand Venkat
Ryan Marcus
Paul Petersen
...
Tim Mattson
Tim Kraska
Pradeep Dubey
Vivek Sarkar
Justin Emile Gottschlich
70
2
0
24 Mar 2020
ProGraML: Graph-based Deep Learning for Program Optimization and
  Analysis
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
309
67
0
23 Mar 2020
Exploiting Token and Path-based Representations of Code for Identifying
  Security-Relevant Commits
Exploiting Token and Path-based Representations of Code for Identifying Security-Relevant Commits
Achyudh Ram
Ji Xin
M. Nagappan
Yaoliang Yu
Rocío Cabrera Lozoya
A. Sabetta
Jimmy J. Lin
86
4
0
15 Nov 2019
Learning based Methods for Code Runtime Complexity Prediction
Learning based Methods for Code Runtime Complexity PredictionEuropean Conference on Information Retrieval (ECIR), 2019
Jagriti Sikka
K. Satya
Yaman Kumar Singla
Shagun Uppal
R. Shah
Roger Zimmermann
139
18
0
04 Nov 2019
Adversarial Examples for Models of Code
Adversarial Examples for Models of Code
Noam Yefet
Uri Alon
Eran Yahav
SILMAAMLMLAU
327
184
0
15 Oct 2019
IdBench: Evaluating Semantic Representations of Identifier Names in
  Source Code
IdBench: Evaluating Semantic Representations of Identifier Names in Source Code
Yaza Wainakh
Moiz Rauf
Michael Pradel
172
5
0
11 Oct 2019
Structural Language Models of Code
Structural Language Models of Code
Uri Alon
Roy Sadaka
Omer Levy
Eran Yahav
418
19
0
30 Sep 2019
IR2Vec: LLVM IR based Scalable Program Embeddings
IR2Vec: LLVM IR based Scalable Program Embeddings
Venkata Keerthy
Rohit Aggarwal
Shalini Jain
Maunendra Sankar
Ramakrishna Upadrasta
Desarkar
163
10
0
13 Sep 2019
Learning the Relation between Code Features and Code Transforms with
  Structured Prediction
Learning the Relation between Code Features and Code Transforms with Structured PredictionIEEE Transactions on Software Engineering (TSE), 2019
Zhongxing Yu
Matias Martinez
Zimin Chen
Tegawende F. Bissyande
Monperrus Martin
186
14
0
22 Jul 2019
Learning a Static Bug Finder from Data
Learning a Static Bug Finder from Data
Yu Wang
Fengjuan Gao
Linzhang Wang
Ke Wang
201
9
0
12 Jul 2019
Neural Bug Finding: A Study of Opportunities and Challenges
Neural Bug Finding: A Study of Opportunities and Challenges
Andrew Habib
Michael Pradel
110
18
0
01 Jun 2019
Enabling Open-World Specification Mining via Unsupervised Learning
Enabling Open-World Specification Mining via Unsupervised Learning
Jordan Henkel
Shuvendu K. Lahiri
B. Liblit
Thomas W. Reps
83
1
0
27 Apr 2019
Modeling Vocabulary for Big Code Machine Learning
Modeling Vocabulary for Big Code Machine Learning
Hlib Babii
Andrea Janes
Romain Robbes
108
22
0
03 Apr 2019
Neural Reverse Engineering of Stripped Binaries using Augmented Control
  Flow Graphs
Neural Reverse Engineering of Stripped Binaries using Augmented Control Flow Graphs
Yaniv David
Uri Alon
Eran Yahav
321
13
0
25 Feb 2019
12
Next