Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.10150
Cited By
v1
v2 (latest)
Learning to Branch
27 March 2018
Maria-Florina Balcan
Travis Dick
Tuomas Sandholm
Ellen Vitercik
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning to Branch"
49 / 99 papers shown
Title
(Machine) Learning to Improve the Empirical Performance of Discrete Algorithms
Imran Adham
J. D. Loera
Zhenyang Zhang
59
4
0
29 Sep 2021
Learning-to-learn non-convex piecewise-Lipschitz functions
Maria-Florina Balcan
M. Khodak
Dravyansh Sharma
Ameet Talwalkar
69
14
0
19 Aug 2021
Accelerating Quadratic Optimization with Reinforcement Learning
Jeffrey Ichnowski
Paras Jain
Bartolomeo Stellato
G. Banjac
Michael Luo
Francesco Borrelli
Joseph E. Gonzalez
Ion Stoica
Ken Goldberg
OffRL
85
36
0
22 Jul 2021
Faster Matchings via Learned Duals
M. Dinitz
Sungjin Im
Thomas Lavastida
Benjamin Moseley
Sergei Vassilvitskii
51
69
0
20 Jul 2021
Learning-based Support Estimation in Sublinear Time
T. Eden
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Sandeep Silwal
Tal Wagner
73
28
0
15 Jun 2021
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
57
39
0
08 Jun 2021
Learning Hard Optimization Problems: A Data Generation Perspective
James Kotary
Ferdinando Fioretto
Pascal Van Hentenryck
41
38
0
04 Jun 2021
Learning to Select Cuts for Efficient Mixed-Integer Programming
Zeren Huang
Kerong Wang
Furui Liu
Hui-Ling Zhen
Weinan Zhang
Mingxuan Yuan
Jianye Hao
Yong Yu
Jun Wang
109
71
0
28 May 2021
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints
Anselm Paulus
Michal Rolínek
Vít Musil
Brandon Amos
Georg Martius
82
62
0
05 May 2021
Statistically-Robust Clustering Techniques for Mapping Spatial Hotspots: A Survey
Yiqun Xie
Shashi Shekhar
Yan Li
77
36
0
22 Mar 2021
Data driven semi-supervised learning
Maria-Florina Balcan
Dravyansh Sharma
76
16
0
18 Mar 2021
Learning to Schedule Heuristics in Branch-and-Bound
Antonia Chmiela
Elias Boutros Khalil
Ambros M. Gleixner
Andrea Lodi
Sebastian Pokutta
97
62
0
18 Mar 2021
Generalization in portfolio-based algorithm selection
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
76
12
0
24 Dec 2020
Solving Mixed Integer Programs Using Neural Networks
Vinod Nair
Sergey Bartunov
Felix Gimeno
Ingrid von Glehn
Pawel Lichocki
...
Pushmeet Kohli
Ira Ktena
Yujia Li
Oriol Vinyals
Yori Zwols
216
251
0
23 Dec 2020
Learnable and Instance-Robust Predictions for Online Matching, Flows and Load Balancing
Thomas Lavastida
Benjamin Moseley
R. Ravi
Chenyang Xu
OOD
104
59
0
23 Nov 2020
Data-driven Algorithm Design
Maria-Florina Balcan
37
2
0
14 Nov 2020
Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers
Antoine Prouvost
Justin Dumouchelle
Lara Scavuzzo
Maxime Gasse
Didier Chételat
Andrea Lodi
OffRL
106
49
0
11 Nov 2020
Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online Algorithms
Alexander Wei
Fred Zhang
93
99
0
22 Oct 2020
A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing
Ping Lang
Xiongjun Fu
M. Martorella
Jian Dong
Rui Qin
Xianpeng Meng
M. Xie
41
42
0
29 Sep 2020
Boosting Ant Colony Optimization via Solution Prediction and Machine Learning
Yuan Sun
Sheng Wang
Yunzhuang Shen
Xiaodong Li
Andreas T. Ernst
M. Kirley
63
28
0
29 Jul 2020
Frequency Estimation in Data Streams: Learning the Optimal Hashing Scheme
Dimitris Bertsimas
V. Digalakis
61
5
0
17 Jul 2020
Learning Branching Heuristics for Propositional Model Counting
Pashootan Vaezipoor
Gil Lederman
Yuhuai Wu
Chris J. Maddison
Roger C. Grosse
Sanjit A. Seshia
F. Bacchus
LRM
82
13
0
07 Jul 2020
Learning Combined Set Covering and Traveling Salesman Problem
Yuwen Yang
J. Rajgopal
31
4
0
07 Jul 2020
Curriculum learning for multilevel budgeted combinatorial problems
Adel Nabli
Margarida Carvalho
AI4CE
85
4
0
07 Jul 2020
Guarantees for Tuning the Step Size using a Learning-to-Learn Approach
Xiang Wang
Shuai Yuan
Chenwei Wu
Rong Ge
75
16
0
30 Jun 2020
Refined bounds for algorithm configuration: The knife-edge of dual class approximability
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
71
15
0
21 Jun 2020
Online Page Migration with ML Advice
Piotr Indyk
Frederik Mallmann-Trenn
Slobodan Mitrović
R. Rubinfeld
OnRL
124
18
0
09 Jun 2020
Reinforcement Learning for Variable Selection in a Branch and Bound Algorithm
Marc Etheve
Zacharie Alès
Côme Bissuel
Olivier Juan
S. Kedad-Sidhoum
68
39
0
20 May 2020
A General Large Neighborhood Search Framework for Solving Integer Linear Programs
Jialin Song
Ravi Lanka
Yisong Yue
B. Dilkina
118
22
0
29 Mar 2020
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers
Michal Rolínek
Paul Swoboda
Dominik Zietlow
Anselm Paulus
Vít Musil
Georg Martius
90
113
0
25 Mar 2020
Learning Complexity of Simulated Annealing
Avrim Blum
Chen Dan
Saeed Seddighin
245
19
0
06 Mar 2020
Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies
Giulia Zarpellon
Jason Jo
Andrea Lodi
Yoshua Bengio
93
98
0
12 Feb 2020
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
106
57
0
01 Jan 2020
Learning-Based Low-Rank Approximations
Piotr Indyk
A. Vakilian
Yang Yuan
94
69
0
30 Oct 2019
How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design
Maria-Florina Balcan
Dan F. DeBlasio
Travis Dick
Carl Kingsford
Tuomas Sandholm
Ellen Vitercik
76
35
0
08 Aug 2019
MIPaaL: Mixed Integer Program as a Layer
Aaron Ferber
Bryan Wilder
B. Dilkina
Milind Tambe
105
147
0
12 Jul 2019
Learning to Handle Parameter Perturbations in Combinatorial Optimization: an Application to Facility Location
Andrea Lodi
Luca Mossina
Emmanuel Rachelson
54
30
0
12 Jul 2019
Learning to Link
Maria-Florina Balcan
Travis Dick
Manuel Lang
90
25
0
01 Jul 2019
Reinforcement Learning for Integer Programming: Learning to Cut
Yunhao Tang
Shipra Agrawal
Yuri Faenza
AI4CE
103
174
0
11 Jun 2019
Data-driven Algorithm Selection and Parameter Tuning: Two Case studies in Optimization and Signal Processing
J. D. Loera
Jamie Haddock
A. Ma
Deanna Needell
22
0
0
31 May 2019
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
70
16
0
26 May 2019
Learning to Prune: Speeding up Repeated Computations
Daniel Alabi
Adam Tauman Kalai
Katrina Ligett
Cameron Musco
Christos Tzamos
Ellen Vitercik
41
19
0
26 Apr 2019
Semi-bandit Optimization in the Dispersed Setting
Maria-Florina Balcan
Travis Dick
W. Pegden
50
21
0
18 Apr 2019
Empirical Bayes Regret Minimization
Chih-Wei Hsu
Branislav Kveton
Ofer Meshi
Martin Mladenov
Csaba Szepesvári
77
13
0
04 Apr 2019
Guiding High-Performance SAT Solvers with Unsat-Core Predictions
Daniel Selsam
Nikolaj S. Bjørner
NAI
103
122
0
12 Mar 2019
Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration
Robert D. Kleinberg
Kevin Leyton-Brown
Brendan Lucier
Devon R. Graham
53
20
0
14 Feb 2019
Learning Space Partitions for Nearest Neighbor Search
Yihe Dong
Piotr Indyk
Ilya P. Razenshteyn
Tal Wagner
86
12
0
24 Jan 2019
LORM: Learning to Optimize for Resource Management in Wireless Networks with Few Training Samples
Yifei Shen
Yuanming Shi
Jun Zhang
Khaled B. Letaief
19
6
0
18 Dec 2018
Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
101
72
0
14 Aug 2018
Previous
1
2