ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.11095
  4. Cited By
Mining on Manifolds: Metric Learning without Labels

Mining on Manifolds: Metric Learning without Labels

29 March 2018
Ahmet Iscen
Giorgos Tolias
Yannis Avrithis
Ondřej Chum
    SSL
ArXivPDFHTML

Papers citing "Mining on Manifolds: Metric Learning without Labels"

20 / 20 papers shown
Title
ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
  Learning
ROGPL_{PL}PL​: Robust Open-Set Graph Learning via Region-Based Prototype Learning
Qin Zhang
Xiaowei Li
Jiexin Lu
Liping Qiu
Shirui Pan
Xiaojun Chen
Junyang Chen
58
1
0
28 Feb 2024
Enhancing Contrastive Learning with Efficient Combinatorial Positive
  Pairing
Enhancing Contrastive Learning with Efficient Combinatorial Positive Pairing
Jaeill Kim
Duhun Hwang
Eunjung Lee
Jangwon Suh
Jimyeong Kim
Wonjong Rhee
33
0
0
11 Jan 2024
DimCL: Dimensional Contrastive Learning For Improving Self-Supervised
  Learning
DimCL: Dimensional Contrastive Learning For Improving Self-Supervised Learning
Thanh Nguyen
T. Pham
Chaoning Zhang
Tung M. Luu
Thang Vu
Chang D. Yoo
27
9
0
21 Sep 2023
A survey of manifold learning and its applications for multimedia
A survey of manifold learning and its applications for multimedia
Hannes Fassold
39
1
0
08 Sep 2023
Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold
  Learning
Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold Learning
L. P. Valem
Daniel Carlos Guimarães Pedronette
Longin Jan Latecki
18
5
0
24 Apr 2023
On the Pros and Cons of Momentum Encoder in Self-Supervised Visual
  Representation Learning
On the Pros and Cons of Momentum Encoder in Self-Supervised Visual Representation Learning
T. Pham
Chaoning Zhang
Axi Niu
Kang Zhang
Chang D. Yoo
36
11
0
11 Aug 2022
Self-Taught Metric Learning without Labels
Self-Taught Metric Learning without Labels
Sungyeon Kim
Dongwon Kim
Minsu Cho
Suha Kwak
SSL
19
20
0
04 May 2022
Max-Margin Contrastive Learning
Max-Margin Contrastive Learning
Anshul B. Shah
S. Sra
Ramalingam Chellappa
A. Cherian
SSL
34
44
0
21 Dec 2021
InsCLR: Improving Instance Retrieval with Self-Supervision
InsCLR: Improving Instance Retrieval with Self-Supervision
Zelu Deng
Yujie Zhong
Sheng Guo
Weilin Huang
28
13
0
02 Dec 2021
Towards noise robust trigger-word detection with contrastive learning
  pre-task for fast on-boarding of new trigger-words
Towards noise robust trigger-word detection with contrastive learning pre-task for fast on-boarding of new trigger-words
S. Balasubramanian
Aditya Jajodia
Gowtham Srinivasan
CLIP
33
0
0
06 Nov 2021
TLDR: Twin Learning for Dimensionality Reduction
TLDR: Twin Learning for Dimensionality Reduction
Yannis Kalantidis
Carlos Lassance
Jon Almazán
Diane Larlus
SSL
27
10
0
18 Oct 2021
Improving Deep Metric Learning by Divide and Conquer
Improving Deep Metric Learning by Divide and Conquer
A. Sanakoyeu
Pingchuan Ma
Vadim Tschernezki
Bjorn Ommer
32
14
0
09 Sep 2021
Exploring Instance Relations for Unsupervised Feature Embedding
Exploring Instance Relations for Unsupervised Feature Embedding
Yifei Zhang
Yu Zhou
Weiping Wang
27
6
0
07 May 2021
Knowledge Evolution in Neural Networks
Knowledge Evolution in Neural Networks
Ahmed Taha
Abhinav Shrivastava
L. Davis
47
21
0
09 Mar 2021
Deep Learning for Instance Retrieval: A Survey
Deep Learning for Instance Retrieval: A Survey
Wei Chen
Yu Liu
Weiping Wang
E. Bakker
Theodoros Georgiou
Paul Fieguth
Li Liu
M. Lew
VLM
11
145
0
27 Jan 2021
Hard Negative Mixing for Contrastive Learning
Hard Negative Mixing for Contrastive Learning
Yannis Kalantidis
Mert Bulent Sariyildiz
Noé Pion
Philippe Weinzaepfel
Diane Larlus
SSL
38
628
0
02 Oct 2020
Deep Manifold Embedding for Hyperspectral Image Classification
Deep Manifold Embedding for Hyperspectral Image Classification
Z. Gong
Weidong Hu
Xiaoyong Du
P. Zhong
Panhe Hu
29
27
0
24 Dec 2019
A Probabilistic approach for Learning Embeddings without Supervision
A Probabilistic approach for Learning Embeddings without Supervision
U. Dutta
Mehrtash Harandi
C. Sekhar
SSL
41
0
0
17 Dec 2019
Deep Metric Learning Beyond Binary Supervision
Deep Metric Learning Beyond Binary Supervision
Sungyeon Kim
Minkyo Seo
Ivan Laptev
Minsu Cho
Suha Kwak
SSL
17
94
0
21 Apr 2019
Unsupervised Embedding Learning via Invariant and Spreading Instance
  Feature
Unsupervised Embedding Learning via Invariant and Spreading Instance Feature
Mang Ye
Xu-Yao Zhang
PongChi Yuen
Shih-Fu Chang
SSL
28
577
0
06 Apr 2019
1