ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.03327
  4. Cited By
Implementing Push-Pull Efficiently in GraphBLAS

Implementing Push-Pull Efficiently in GraphBLAS

10 April 2018
Carl Yang
A. Buluç
John Douglas Owens
ArXivPDFHTML

Papers citing "Implementing Push-Pull Efficiently in GraphBLAS"

3 / 3 papers shown
Title
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution
  Networks
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks
Xiaoru Xie
Hongwu Peng
Amit Hasan
Shaoyi Huang
Jiahui Zhao
Haowen Fang
Wei Zhang
Tong Geng
O. Khan
Caiwen Ding
GNN
28
30
0
22 Aug 2023
Parallel Algorithms for Masked Sparse Matrix-Matrix Products
Parallel Algorithms for Masked Sparse Matrix-Matrix Products
Srđan Milaković
Oguz Selvitopi
Israt Nisa
Zoran Budimlic
A. Buluç
19
6
0
18 Nov 2021
GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on
  the GPU
GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU
Carl Yang
A. Buluç
John Douglas Owens
GNN
16
97
0
04 Aug 2019
1