ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05132
12
242

Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection

13 April 2018
Di Feng
Lars Rosenbaum
Klaus C. J. Dietmayer
    3DPC
    UQCV
ArXivPDFHTML
Abstract

To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction confidence as well. Previous object detectors driven by deep learning do not explicitly model uncertainties in the neural network. We tackle with this problem by presenting practical methods to capture uncertainties in a 3D vehicle detector for Lidar point clouds. The proposed probabilistic detector represents reliable epistemic uncertainty and aleatoric uncertainty in classification and localization tasks. Experimental results show that the epistemic uncertainty is related to the detection accuracy, whereas the aleatoric uncertainty is influenced by vehicle distance and occlusion. The results also show that we can improve the detection performance by 1%-5% by modeling the aleatoric uncertainty.

View on arXiv
Comments on this paper