ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05809
  4. Cited By
Split-and-augmented Gibbs sampler - Application to large-scale inference
  problems

Split-and-augmented Gibbs sampler - Application to large-scale inference problems

16 April 2018
Maxime Vono
N. Dobigeon
P. Chainais
ArXivPDFHTML

Papers citing "Split-and-augmented Gibbs sampler - Application to large-scale inference problems"

9 / 9 papers shown
Title
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
137
1
0
08 Oct 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play
  Priors
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine Bouman
DiffM
34
20
0
29 May 2024
Distributed Markov Chain Monte Carlo Sampling based on the Alternating
  Direction Method of Multipliers
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Alexandros E. Tzikas
Licio Romao
Mert Pilanci
Alessandro Abate
Mykel J. Kochenderfer
34
0
0
29 Jan 2024
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
Plug-and-Play split Gibbs sampler: embedding deep generative priors in
  Bayesian inference
Plug-and-Play split Gibbs sampler: embedding deep generative priors in Bayesian inference
Florentin Coeurdoux
N. Dobigeon
P. Chainais
27
15
0
21 Apr 2023
Optimized Population Monte Carlo
Optimized Population Monte Carlo
Victor Elvira
Émilie Chouzenoux
32
23
0
14 Apr 2022
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
24
37
0
23 May 2019
Asymptotically exact data augmentation: models, properties and
  algorithms
Asymptotically exact data augmentation: models, properties and algorithms
Maxime Vono
N. Dobigeon
P. Chainais
21
27
0
15 Feb 2019
New models for symbolic data analysis
New models for symbolic data analysis
B. Beranger
Huan-xiang Lin
Scott A. Sisson
21
25
0
11 Sep 2018
1