ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.05906
  4. Cited By
An information-theoretic on-line update principle for perception-action
  coupling

An information-theoretic on-line update principle for perception-action coupling

16 April 2018
Zhen Peng
Tim Genewein
Felix Leibfried
Daniel A. Braun
ArXiv (abs)PDFHTML

Papers citing "An information-theoretic on-line update principle for perception-action coupling"

7 / 7 papers shown
Title
Variational Inference for Model-Free and Model-Based Reinforcement
  Learning
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
78
0
0
04 Sep 2022
Solving Dynamic Principal-Agent Problems with a Rationally Inattentive
  Principal
Solving Dynamic Principal-Agent Problems with a Rationally Inattentive Principal
Tong Mu
Stephan Zheng
Alexander R. Trott
49
3
0
18 Jan 2022
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
164
52
0
27 Dec 2020
Specialization in Hierarchical Learning Systems
Specialization in Hierarchical Learning Systems
Heinke Hihn
Daniel A. Braun
83
16
0
03 Nov 2020
An Information-theoretic On-line Learning Principle for Specialization
  in Hierarchical Decision-Making Systems
An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
84
16
0
26 Jul 2019
Bounded Rational Decision-Making with Adaptive Neural Network Priors
Bounded Rational Decision-Making with Adaptive Neural Network Priors
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
75
10
0
04 Sep 2018
An Information-Theoretic Optimality Principle for Deep Reinforcement
  Learning
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
Felix Leibfried
Jordi Grau-Moya
Haitham Bou-Ammar
101
24
0
06 Aug 2017
1