ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07000
  4. Cited By
Utilizing Neural Networks and Linguistic Metadata for Early Detection of
  Depression Indications in Text Sequences

Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences

19 April 2018
Marcel Trotzek
Sven Koitka
Christoph M. Friedrich
ArXivPDFHTML

Papers citing "Utilizing Neural Networks and Linguistic Metadata for Early Detection of Depression Indications in Text Sequences"

6 / 6 papers shown
Title
DepressionX: Knowledge Infused Residual Attention for Explainable Depression Severity Assessment
Yusif Ibrahimov
Tarique Anwar
Tommy Yuan
37
0
0
28 Jan 2025
DepressionEmo: A novel dataset for multilabel classification of
  depression emotions
DepressionEmo: A novel dataset for multilabel classification of depression emotions
Abu Bakar Siddiqur Rahman
Hoang-Thang Ta
Lotfollah Najjar
A. Azadmanesh
A. Gonul
AI4MH
23
10
0
09 Jan 2024
Utilizing ChatGPT Generated Data to Retrieve Depression Symptoms from
  Social Media
Utilizing ChatGPT Generated Data to Retrieve Depression Symptoms from Social Media
Ana-Maria Bucur
AI4MH
22
10
0
05 Jul 2023
Semantic Similarity Models for Depression Severity Estimation
Semantic Similarity Models for Depression Severity Estimation
Anxo Perez
Neha Warikoo
Kexin Wang
Javier Parapar
Iryna Gurevych
AI4MH
13
7
0
14 Nov 2022
A Novel Sentiment Analysis Engine for Preliminary Depression Status
  Estimation on Social Media
A Novel Sentiment Analysis Engine for Preliminary Depression Status Estimation on Social Media
S. Suman
H. Shalu
Lakshya A Agrawal
Archit Agrawal
Juned Kadiwala
13
6
0
29 Nov 2020
Anxious Depression Prediction in Real-time Social Data
Anxious Depression Prediction in Real-time Social Data
Akshi Kumar
Aditi Sharma
Anshika Arora
16
83
0
25 Mar 2019
1