ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.01214
  4. Cited By
The Algorithm Selection Competitions 2015 and 2017
v1v2 (latest)

The Algorithm Selection Competitions 2015 and 2017

3 May 2018
Marius Lindauer
Jan N. van Rijn
Lars Kotthoff
ArXiv (abs)PDFHTML

Papers citing "The Algorithm Selection Competitions 2015 and 2017"

14 / 14 papers shown
Title
On Constructing Algorithm Portfolios in Algorithm Selection for
  Computationally Expensive Black-box Optimization in the Fixed-budget Setting
On Constructing Algorithm Portfolios in Algorithm Selection for Computationally Expensive Black-box Optimization in the Fixed-budget Setting
Takushi Yoshikawa
Ryoji Tanabe
44
0
0
13 May 2024
Characterising harmful data sources when constructing multi-fidelity
  surrogate models
Characterising harmful data sources when constructing multi-fidelity surrogate models
Nicolau Andrés-Thió
Mario Andrés Muñoz
Kate Smith-Miles
28
1
0
12 Mar 2024
Automatic Algorithm Selection for Pseudo-Boolean Optimization with Given
  Computational Time Limits
Automatic Algorithm Selection for Pseudo-Boolean Optimization with Given Computational Time Limits
Catalina Pezo
D. Hochbaum
Julio Godoy
Roberto Javier Asín Achá
16
1
0
07 Sep 2023
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
86
4
0
17 Jul 2023
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and
  Salvageable Failure
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure
Lennart Purucker
Joeran Beel
59
8
0
01 Jul 2023
Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone
  fine-tuning without episodic meta-learning dominates for few-shot learning
  image classification
Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification
Adrian El Baz
Ihsan Ullah
Edesio Alcobaça
André C. P. L. F. de Carvalho
Hong Chen
...
Ekrem Öztürk
J. V. Rijn
Haozhe Sun
Xin Wang
Wenwu Zhu
79
12
0
15 Jun 2022
On the evaluation of (meta-)solver approaches
On the evaluation of (meta-)solver approaches
R. Amadini
M. Gabbrielli
Tong Liu
J. Mauro
ELMOffRL
24
1
0
17 Feb 2022
Advances in MetaDL: AAAI 2021 challenge and workshop
Advances in MetaDL: AAAI 2021 challenge and workshop
Adrian El Baz
Isabelle M Guyon
Zhengying Liu
J. V. Rijn
Sébastien Treguer
Joaquin Vanschoren
117
7
0
01 Feb 2022
Benchmarking Feature-based Algorithm Selection Systems for Black-box
  Numerical Optimization
Benchmarking Feature-based Algorithm Selection Systems for Black-box Numerical Optimization
Ryoji Tanabe
63
15
0
17 Sep 2021
Algorithm Selection on a Meta Level
Algorithm Selection on a Meta Level
Alexander Tornede
Lukas Gehring
Tanja Tornede
Marcel Wever
Eyke Hüllermeier
67
19
0
20 Jul 2021
Towards Meta-Algorithm Selection
Towards Meta-Algorithm Selection
Alexander Tornede
Marcel Wever
Eyke Hüllermeier
63
5
0
17 Nov 2020
sunny-as2: Enhancing SUNNY for Algorithm Selection
sunny-as2: Enhancing SUNNY for Algorithm Selection
Tong Liu
R. Amadini
J. Mauro
M. Gabbrielli
17
6
0
07 Sep 2020
Auto-CASH: Autonomous Classification Algorithm Selection with Deep
  Q-Network
Auto-CASH: Autonomous Classification Algorithm Selection with Deep Q-Network
Tianyu Mu
Hongzhi Wang
Chunnan Wang
Zheng Liang
31
1
0
07 Jul 2020
Auto-Model: Utilizing Research Papers and HPO Techniques to Deal with
  the CASH problem
Auto-Model: Utilizing Research Papers and HPO Techniques to Deal with the CASH problem
Chunnan Wang
Hongzhi Wang
Tianyu Mu
Jianzhong Li
Hong Gao
26
10
0
24 Oct 2019
1