ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.03441
  4. Cited By
Machine Learning in Compiler Optimisation

Machine Learning in Compiler Optimisation

9 May 2018
Zheng Wang
Michael F. P. O'Boyle
    VLM
ArXivPDFHTML

Papers citing "Machine Learning in Compiler Optimisation"

28 / 28 papers shown
Title
Meta Large Language Model Compiler: Foundation Models of Compiler
  Optimization
Meta Large Language Model Compiler: Foundation Models of Compiler Optimization
Chris Cummins
Volker Seeker
Dejan Grubisic
Baptiste Roziere
Jonas Gehring
Gabriel Synnaeve
Hugh Leather
29
16
0
27 Jun 2024
Compiler generated feedback for Large Language Models
Compiler generated feedback for Large Language Models
Dejan Grubisic
Chris Cummins
Volker Seeker
Hugh Leather
24
5
0
18 Mar 2024
Large Language Models for Compiler Optimization
Large Language Models for Compiler Optimization
Chris Cummins
Volker Seeker
Dejan Grubisic
Mostafa Elhoushi
Youwei Liang
...
Jonas Gehring
Fabian Gloeckle
Kim M. Hazelwood
Gabriel Synnaeve
Hugh Leather
18
47
0
11 Sep 2023
Machine Learning-Driven Adaptive OpenMP For Portable Performance on
  Heterogeneous Systems
Machine Learning-Driven Adaptive OpenMP For Portable Performance on Heterogeneous Systems
Giorgis Georgakoudis
K. Parasyris
C. Liao
D. Beckingsale
T. Gamblin
B. D. Supinski
20
1
0
15 Mar 2023
BenchDirect: A Directed Language Model for Compiler Benchmarks
BenchDirect: A Directed Language Model for Compiler Benchmarks
Foivos Tsimpourlas
Pavlos Petoumenos
Min Xu
Chris Cummins
K. Hazelwood
A. Rajan
Hugh Leather
ELM
13
3
0
02 Mar 2023
Optimizing LLVM Pass Sequences with Shackleton: A Linear Genetic
  Programming Framework
Optimizing LLVM Pass Sequences with Shackleton: A Linear Genetic Programming Framework
H. Peeler
Shuyue Stella Li
A. Sloss
Kenneth N. Reid
Yuan Yuan
W. Banzhaf
26
10
0
31 Jan 2022
Dynamic GPU Energy Optimization for Machine Learning Training Workloads
Dynamic GPU Energy Optimization for Machine Learning Training Workloads
Farui Wang
Weizhe Zhang
Shichao Lai
Meng Hao
Zheng Wang
16
29
0
05 Jan 2022
Optimizing Sparse Matrix Multiplications for Graph Neural Networks
Optimizing Sparse Matrix Multiplications for Graph Neural Networks
Shenghao Qiu
You Liang
Zheng Wang
GNN
21
18
0
30 Oct 2021
FOGA: Flag Optimization with Genetic Algorithm
FOGA: Flag Optimization with Genetic Algorithm
Burak Tagtekin
Berkan Höke
M. Sezer
Mahiye Uluyagmur Öztürk
9
5
0
15 May 2021
A Reinforcement Learning Environment for Polyhedral Optimizations
A Reinforcement Learning Environment for Polyhedral Optimizations
Alexander Brauckmann
Andrés Goens
J. Castrillón
18
6
0
28 Apr 2021
Automatic Cause Detection of Performance Problems in Web Applications
Automatic Cause Detection of Performance Problems in Web Applications
Quentin Fournier
Naser Ezzati-Jivan
Daniel Aloise
M. Dagenais
20
8
0
08 Mar 2021
Deep Data Flow Analysis
Deep Data Flow Analysis
Chris Cummins
Hugh Leather
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Michael F. P. O'Boyle
11
4
0
21 Nov 2020
ProTuner: Tuning Programs with Monte Carlo Tree Search
ProTuner: Tuning Programs with Monte Carlo Tree Search
Ameer Haj-Ali
Hasan Genç
Qijing Huang
William S. Moses
J. Wawrzynek
Krste Asanović
Ion Stoica
17
21
0
27 May 2020
Parallel Programming Models for Heterogeneous Many-Cores : A Survey
Parallel Programming Models for Heterogeneous Many-Cores : A Survey
Jianbin Fang
Chun Huang
T. Tang
Z. Wang
SyDa
MoMe
14
3
0
05 May 2020
Smart, Adaptive Energy Optimization for Mobile Web Interactions
Smart, Adaptive Energy Optimization for Mobile Web Interactions
Jie Ren
Lu Yuan
Petteri Nurmi
Xiaoming Wang
Miao Ma
Ling Gao
Zhanyong Tang
Jie Zheng
Zheng Wang
13
13
0
02 May 2020
ProGraML: Graph-based Deep Learning for Program Optimization and
  Analysis
ProGraML: Graph-based Deep Learning for Program Optimization and Analysis
Chris Cummins
Zacharias V. Fisches
Tal Ben-Nun
Torsten Hoefler
Hugh Leather
85
56
0
23 Mar 2020
Optimizing Streaming Parallelism on Heterogeneous Many-Core
  Architectures: A Machine Learning Based Approach
Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures: A Machine Learning Based Approach
Peng Zhang
Jianbin Fang
Canqun Yang
Chun Huang
T. Tang
Z. Wang
14
14
0
05 Mar 2020
AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep
  Reinforcement Learning
AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning
Qijing Huang
Ameer Haj-Ali
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
15
55
0
02 Mar 2020
Automated Parallel Kernel Extraction from Dynamic Application Traces
Automated Parallel Kernel Extraction from Dynamic Application Traces
Richard Uhrie
C. Chakrabarti
J. Brunhaver
14
7
0
27 Jan 2020
Characterizing Scalability of Sparse Matrix-Vector Multiplications on
  Phytium FT-2000+ Many-cores
Characterizing Scalability of Sparse Matrix-Vector Multiplications on Phytium FT-2000+ Many-cores
Donglin Chen
Jianbin Fang
Chuanfu Xu
Shizhao Chen
Zheng Wang
14
13
0
20 Nov 2019
Optimizing Deep Learning Inference on Embedded Systems Through Adaptive
  Model Selection
Optimizing Deep Learning Inference on Embedded Systems Through Adaptive Model Selection
Vicent Sanz Marco
Ben Taylor
Z. Wang
Y. Elkhatib
17
60
0
09 Nov 2019
Revocable Federated Learning: A Benchmark of Federated Forest
Revocable Federated Learning: A Benchmark of Federated Forest
Yang Liu
Zhuo Ma
Ximeng Liu
Zhuzhu Wang
Siqi Ma
Ken Ren
FedML
MU
11
10
0
08 Nov 2019
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement
  Learning
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning
Ameer Haj-Ali
Nesreen Ahmed
Theodore L. Willke
Sophia Shao
Krste Asanović
Ion Stoica
14
101
0
20 Sep 2019
Using Machine Learning to Optimize Web Interactions on Heterogeneous
  Mobile Multi-cores
Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Multi-cores
Lu Yuan
Jie Ren
Ling Gao
Zhanyong Tang
Zheng Wang
14
9
0
20 Jun 2019
Categorization of Program Regions for Agile Compilation using Machine
  Learning and Hardware Support
Categorization of Program Regions for Agile Compilation using Machine Learning and Hardware Support
Sanket Tavarageri
11
0
0
29 May 2019
AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep
  Reinforcement Learning
AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep Reinforcement Learning
Ameer Haj-Ali
Qijing Huang
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
21
36
0
15 Jan 2019
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
23
144
0
15 Oct 2018
Adaptive Selection of Deep Learning Models on Embedded Systems
Adaptive Selection of Deep Learning Models on Embedded Systems
Ben Taylor
Vicent Sanz Marco
W. Wolff
Yehia El-khatib
Zheng Wang
15
13
0
11 May 2018
1