ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.04234
  4. Cited By
Distributed Deep Forest and its Application to Automatic Detection of
  Cash-out Fraud

Distributed Deep Forest and its Application to Automatic Detection of Cash-out Fraud

11 May 2018
Ya-Lin Zhang
Jun Zhou
Wenhao Zheng
Ji Feng
Longfei Li
Ziqi Liu
Ming Li
Qing Cui
Chaochao Chen
Xiaolong Li
Zhi-Hua Zhou
Yuan
QI
ArXivPDFHTML

Papers citing "Distributed Deep Forest and its Application to Automatic Detection of Cash-out Fraud"

4 / 4 papers shown
Title
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest
Shen-Huan Lyu
Jin-Hui Wu
Qin-Cheng Zheng
Baoliu Ye
44
0
0
06 Jul 2024
Locally-Minimal Probabilistic Explanations
Locally-Minimal Probabilistic Explanations
Yacine Izza
Kuldeep S. Meel
Sasha Rubin
21
3
0
19 Dec 2023
ALT: An Automatic System for Long Tail Scenario Modeling
ALT: An Automatic System for Long Tail Scenario Modeling
Ya-Lin Zhang
Jun Zhou
Yankun Ren
Yue Zhang
Xinxing Yang
Meng Li
Qitao Shi
Longfei Li
30
0
0
19 May 2023
SAFE: Scalable Automatic Feature Engineering Framework for Industrial
  Tasks
SAFE: Scalable Automatic Feature Engineering Framework for Industrial Tasks
Qitao Shi
Ya-Lin Zhang
Longfei Li
Xinxing Yang
Meng Li
Jun Zhou
39
30
0
05 Mar 2020
1