ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.04514
  4. Cited By
Metatrace Actor-Critic: Online Step-size Tuning by Meta-gradient Descent
  for Reinforcement Learning Control

Metatrace Actor-Critic: Online Step-size Tuning by Meta-gradient Descent for Reinforcement Learning Control

10 May 2018
K. Young
Baoxiang Wang
Matthew E. Taylor
    OffRL
ArXivPDFHTML

Papers citing "Metatrace Actor-Critic: Online Step-size Tuning by Meta-gradient Descent for Reinforcement Learning Control"

4 / 4 papers shown
Title
Exploring the Noise Resilience of Successor Features and Predecessor
  Features Algorithms in One and Two-Dimensional Environments
Exploring the Noise Resilience of Successor Features and Predecessor Features Algorithms in One and Two-Dimensional Environments
Hyunsung Lee
24
1
0
14 Apr 2023
A Framework for History-Aware Hyperparameter Optimisation in
  Reinforcement Learning
A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning
Juan Marcelo Parra Ullauri
Chen Zhen
A. García-Domínguez
Nelly Bencomo
Changgang Zheng
Juan Boubeta-Puig
Guadalupe Ortiz
Shufan Yang
OffRL
21
0
0
09 Mar 2023
Learning Feature Relevance Through Step Size Adaptation in
  Temporal-Difference Learning
Learning Feature Relevance Through Step Size Adaptation in Temporal-Difference Learning
Alex Kearney
Vivek Veeriah
Jaden B. Travnik
P. Pilarski
R. Sutton
OOD
25
13
0
08 Mar 2019
MinAtar: An Atari-Inspired Testbed for Thorough and Reproducible
  Reinforcement Learning Experiments
MinAtar: An Atari-Inspired Testbed for Thorough and Reproducible Reinforcement Learning Experiments
K. Young
Tian Tian
16
24
0
07 Mar 2019
1