ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.05208
  4. Cited By
Theoretically Efficient Parallel Graph Algorithms Can Be Fast and
  Scalable
v1v2v3v4 (latest)

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

14 May 2018
Laxman Dhulipala
G. Blelloch
Julian Shun
    GNN
ArXiv (abs)PDFHTML

Papers citing "Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable"

27 / 27 papers shown
Title
Engineering Massively Parallel MST Algorithms
Engineering Massively Parallel MST Algorithms
Peter Sanders
Matthias Schimek
60
4
0
23 Feb 2023
Engineering a Distributed-Memory Triangle Counting Algorithm
Engineering a Distributed-Memory Triangle Counting Algorithm
Peter Sanders
Tim Niklas Uhl
69
9
0
22 Feb 2023
PaC-trees: Supporting Parallel and Compressed Purely-Functional
  Collections
PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections
Laxman Dhulipala
G. Blelloch
Yan Gu
Yihan Sun
27
22
0
12 Apr 2022
Efficient and Scalable Graph Pattern Mining on GPUs
Efficient and Scalable Graph Pattern Mining on GPUs
Xuhao Chen
Arvind Mit Csail
GNN
60
33
0
17 Dec 2021
Theoretically and Practically Efficient Parallel Nucleus Decomposition
Theoretically and Practically Efficient Parallel Nucleus Decomposition
Jessica Shi
Laxman Dhulipala
Julian Shun
GNN
48
8
0
22 Nov 2021
Analysis of Work-Stealing and Parallel Cache Complexity
Analysis of Work-Stealing and Parallel Cache Complexity
Yan Gu
Zachary Napier
Yihan Sun
81
14
0
09 Nov 2021
Parallel Minimum Spanning Forest Computation using Sparse Matrix Kernels
Parallel Minimum Spanning Forest Computation using Sparse Matrix Kernels
Tim Baer
Raghavendra Kanakagiri
Edgar Solomonik
49
3
0
10 Oct 2021
Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time
Hierarchical Agglomerative Graph Clustering in Nearly-Linear Time
Laxman Dhulipala
David Eisenstat
Jakub Lacki
Vahab Mirrokni
Jessica Shi
56
23
0
10 Jun 2021
Efficient Stepping Algorithms and Implementations for Parallel Shortest
  Paths
Efficient Stepping Algorithms and Implementations for Parallel Shortest Paths
Xiaojun Dong
Yan Gu
Yihan Sun
Yunming Zhang
67
33
0
13 May 2021
SISA: Set-Centric Instruction Set Architecture for Graph Mining on
  Processing-in-Memory Systems
SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems
Maciej Besta
Raghavendra Kanakagiri
Grzegorz Kwa'sniewski
Rachata Ausavarungnirun
Jakub Beránek
...
Salvatore Di Girolamo
Marek Konieczny
Nils Blach
O. Mutlu
Torsten Hoefler
56
87
0
15 Apr 2021
Cache-Efficient Fork-Processing Patterns on Large Graphs
Cache-Efficient Fork-Processing Patterns on Large Graphs
Shengliang Lu
Shixuan Sun
Johns Paul
Yuchen Li
Bingsheng He
63
12
0
27 Mar 2021
ButterFly BFS -- An Efficient Communication Pattern for Multi Node
  Traversals
ButterFly BFS -- An Efficient Communication Pattern for Multi Node Traversals
Oded Green
GNN
13
2
0
25 Mar 2021
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining
  Algorithms with Set Algebra
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra
Maciej Besta
Zur Vonarburg-Shmaria
Yannick Schaffner
Leonardo Schwarz
Grzegorz Kwa'sniewski
...
Philipp Lindenberger
Pavel Kalvoda
Marek Konieczny
O. Mutlu
Torsten Hoefler
82
26
0
05 Mar 2021
Parallel Index-Based Structural Graph Clustering and Its Approximation
Parallel Index-Based Structural Graph Clustering and Its Approximation
Tom Tseng
Laxman Dhulipala
Julian Shun
62
21
0
21 Dec 2020
Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining
Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining
Xuhao Chen
Roshan Dathathri
G. Gill
Loc Hoang
K. Pingali
52
38
0
05 Nov 2020
Conceptual and Technical Challenges for High Performance Computing
Conceptual and Technical Challenges for High Performance Computing
C. Tadonki
LRM
23
0
0
06 Oct 2020
High-Performance Parallel Graph Coloring with Strong Guarantees on Work,
  Depth, and Quality
High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality
Maciej Besta
Armon Carigiet
Zur Vonarburg-Shmaria
Kacper Janda
Lukas Gianinazzi
Torsten Hoefler
97
25
0
26 Aug 2020
ConnectIt: A Framework for Static and Incremental Parallel Graph
  Connectivity Algorithms
ConnectIt: A Framework for Static and Incremental Parallel Graph Connectivity Algorithms
Laxman Dhulipala
Changwan Hong
Julian Shun
GNN
70
36
0
10 Aug 2020
Generation of Paths in a Maze using a Deep Network without Learning
Generation of Paths in a Maze using a Deep Network without Learning
Tomas Kulvicius
S. Herzog
M. Tamosiunaite
Florentin Wörgötter
23
3
0
01 Apr 2020
Parallel Batch-Dynamic $k$-Clique Counting
Parallel Batch-Dynamic kkk-Clique Counting
Laxman Dhulipala
Quanquan C. Liu
Julian Shun
Shangdi Yu
103
26
0
30 Mar 2020
Efficiency Guarantees for Parallel Incremental Algorithms under Relaxed
  Schedulers
Efficiency Guarantees for Parallel Incremental Algorithms under Relaxed Schedulers
Dan Alistarh
N. Koval
Giorgi Nadiradze
49
6
0
20 Mar 2020
Parallel Clique Counting and Peeling Algorithms
Parallel Clique Counting and Peeling Algorithms
Jessica Shi
Laxman Dhulipala
Julian Shun
72
42
0
24 Feb 2020
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs
Laxman Dhulipala
Charles McGuffey
H. Kang
Yan Gu
G. Blelloch
Phillip B. Gibbons
Julian Shun
GNN
54
12
0
27 Oct 2019
Parallel Algorithms for Butterfly Computations
Parallel Algorithms for Butterfly Computations
Jessica Shi
Julian Shun
54
35
0
19 Jul 2019
Pruned Landmark Labeling Meets Vertex Centric Computation: A
  Surprisingly Happy Marriage!
Pruned Landmark Labeling Meets Vertex Centric Computation: A Surprisingly Happy Marriage!
R. Jin
Zhen Peng
W. Wu
F. Dragan
G. Agrawal
Bin Ren
46
3
0
28 Jun 2019
Low-Latency Graph Streaming Using Compressed Purely-Functional Trees
Low-Latency Graph Streaming Using Compressed Purely-Functional Trees
Laxman Dhulipala
Julian Shun
G. Blelloch
64
127
0
17 Apr 2019
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC
  Persistent Memory
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC Persistent Memory
G. Gill
Roshan Dathathri
Loc Hoang
R. Peri
K. Pingali
GNN
57
80
0
15 Apr 2019
1