ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08061
  4. Cited By
NEWMA: a new method for scalable model-free online change-point
  detection

NEWMA: a new method for scalable model-free online change-point detection

21 May 2018
Nicolas Keriven
Damien Garreau
Iacopo Poli
ArXivPDFHTML

Papers citing "NEWMA: a new method for scalable model-free online change-point detection"

3 / 3 papers shown
Title
Change Detection in Multivariate data streams: Online Analysis with Kernel-QuantTree
Change Detection in Multivariate data streams: Online Analysis with Kernel-QuantTree
Michelangelo Olmo Nogara Notarianni
Filippo Leveni
Diego Stucchi
Luca Frittoli
Giacomo Boracchi
24
0
0
17 Oct 2024
A Log-Linear Non-Parametric Online Changepoint Detection Algorithm based
  on Functional Pruning
A Log-Linear Non-Parametric Online Changepoint Detection Algorithm based on Functional Pruning
Gaetano Romano
I. Eckley
Paul Fearnhead
24
4
0
06 Feb 2023
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Florian Kalinke
Marco Heyden
Edouard Fouché
Klemens Bohm
Klemens Böhm
24
0
0
25 May 2022
1