ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08693
  4. Cited By
High throughput quantitative metallography for complex microstructures
  using deep learning: A case study in ultrahigh carbon steel

High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel

4 May 2018
Brian L. DeCost
Bo Lei
T. Francis
Elizabeth A. Holm
    AI4CE
ArXivPDFHTML

Papers citing "High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel"

20 / 20 papers shown
Title
A Framework for Supervised and Unsupervised Segmentation and Classification of Materials Microstructure Images
A Framework for Supervised and Unsupervised Segmentation and Classification of Materials Microstructure Images
Kungang Zhang
D. Apley
Wei Chen
Wing Kam Liu
L. Brinson
42
0
0
10 Feb 2025
A versatile machine learning workflow for high-throughput analysis of
  supported metal catalyst particles
A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles
A. Genç
Justin Marlowe
Anika Jalil
L. Kovarik
Phillip Christopher
37
1
0
02 Oct 2024
MatSAM: Efficient Extraction of Microstructures of Materials via Visual
  Large Model
MatSAM: Efficient Extraction of Microstructures of Materials via Visual Large Model
Changtai Li
Xu Han
Chao Yao
Xiaojuan Ban
36
2
0
11 Jan 2024
Microstructure quality control of steels using deep learning
Microstructure quality control of steels using deep learning
Ali Riza Durmaz
Sai Teja Potu
Daniel Romich
Johannes Möller
R. Nützel
21
5
0
01 Jun 2023
Automated Grain Boundary (GB) Segmentation and Microstructural Analysis
  in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy
Automated Grain Boundary (GB) Segmentation and Microstructural Analysis in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy
S. Chowdhury
M. Taufique
Junchang Wang
Marissa Masden
M. Wenzlick
Ram Devanathan
A. Schemer-Kohrn
K. Kappagantula
18
5
0
12 May 2023
Recent Advances and Applications of Machine Learning in Experimental
  Solid Mechanics: A Review
Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review
Hanxun Jin
Enrui Zhang
H. Espinosa
AI4CE
31
68
0
14 Mar 2023
A Survey on Semi-Supervised Semantic Segmentation
A Survey on Semi-Supervised Semantic Segmentation
Adrian Peláez-Vegas
Pablo Mesejo
Julián Luengo
32
27
0
20 Feb 2023
Computer Vision Methods for the Microstructural Analysis of Materials:
  The State-of-the-art and Future Perspectives
Computer Vision Methods for the Microstructural Analysis of Materials: The State-of-the-art and Future Perspectives
Khaled Alrfou
Amir Kordijazi
Tian Zhao
3DV
44
6
0
29 Jul 2022
Digital Fingerprinting of Microstructures
Digital Fingerprinting of Microstructures
Michael White
Alexander Tarakanov
C. Race
P. Withers
K. Law
34
7
0
25 Mar 2022
A Deep Learning Approach for Semantic Segmentation of Unbalanced Data in
  Electron Tomography of Catalytic Materials
A Deep Learning Approach for Semantic Segmentation of Unbalanced Data in Electron Tomography of Catalytic Materials
A. Genç
L. Kovarik
H. Fraser
42
15
0
18 Jan 2022
Addressing materials' microstructure diversity using transfer learning
Addressing materials' microstructure diversity using transfer learning
Aurèle Goetz
Ali Riza Durmaz
Martin Müller
Akhil Thomas
D. Britz
P. Kerfriden
C. Eberl
OOD
22
21
0
29 Jul 2021
Design of a Graphical User Interface for Few-Shot Machine Learning
  Classification of Electron Microscopy Data
Design of a Graphical User Interface for Few-Shot Machine Learning Classification of Electron Microscopy Data
Christina Doty
Shaun Gallagher
Wenqi Cui
Wenya Chen
Shweta Bhushan
Marjolein Oostrom
Sarah Akers
Steven Spurgeon
18
19
0
21 Jul 2021
An End-to-End Computer Vision Methodology for Quantitative Metallography
An End-to-End Computer Vision Methodology for Quantitative Metallography
M. Rusanovsky
O. Beeri
Gal Oren
15
18
0
22 Apr 2021
Image-driven discriminative and generative machine learning algorithms
  for establishing microstructure-processing relationships
Image-driven discriminative and generative machine learning algorithms for establishing microstructure-processing relationships
Wufei Ma
E. Kautz
Arun Baskaran
Aritra Chowdhury
V. Joshi
B. Yener
D. Lewis
AI4CE
37
42
0
27 Jul 2020
Unsupervised machine learning via transfer learning and k-means
  clustering to classify materials image data
Unsupervised machine learning via transfer learning and k-means clustering to classify materials image data
R. Cohn
Elizabeth A. Holm
8
64
0
16 Jul 2020
Overview: Computer vision and machine learning for microstructural
  characterization and analysis
Overview: Computer vision and machine learning for microstructural characterization and analysis
Elizabeth A. Holm
R. Cohn
Nan Gao
Andrew R. Kitahara
Thomas P. Matson
Bo Lei
Srujana Rao Yarasi
31
161
0
28 May 2020
MLography: An Automated Quantitative Metallography Model for Impurities
  Anomaly Detection using Novel Data Mining and Deep Learning Approach
MLography: An Automated Quantitative Metallography Model for Impurities Anomaly Detection using Novel Data Mining and Deep Learning Approach
M. Rusanovsky
Gal Oren
S. Ifergane
O. Beeri
16
3
0
27 Feb 2020
Machine Learning Pipeline for Segmentation and Defect Identification
  from High Resolution Transmission Electron Microscopy Data
Machine Learning Pipeline for Segmentation and Defect Identification from High Resolution Transmission Electron Microscopy Data
Catherine K. Groschner
Christina Choi
M. Scott
4
36
0
14 Jan 2020
An image-driven machine learning approach to kinetic modeling of a
  discontinuous precipitation reaction
An image-driven machine learning approach to kinetic modeling of a discontinuous precipitation reaction
E. Kautz
Wufei Ma
S. Jana
A. Devaraj
V. Joshi
B. Yener
D. Lewis
25
21
0
13 Jun 2019
Paradigm shift in electron-based crystallography via machine learning
Paradigm shift in electron-based crystallography via machine learning
Kevin Kaufmann
Chaoyi Zhu
Alexander S. Rosengarten
Daniel Maryanovsky
Tyler J. Harrington
E. Marin
K. Vecchio
14
113
0
10 Feb 2019
1