ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08727
  4. Cited By
Algorithms and Theory for Multiple-Source Adaptation

Algorithms and Theory for Multiple-Source Adaptation

20 May 2018
Judy Hoffman
M. Mohri
Ningshan Zhang
    OOD
ArXivPDFHTML

Papers citing "Algorithms and Theory for Multiple-Source Adaptation"

44 / 44 papers shown
Title
What Does Softmax Probability Tell Us about Classifiers Ranking Across
  Diverse Test Conditions?
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
44
0
0
14 Jun 2024
LanDA: Language-Guided Multi-Source Domain Adaptation
LanDA: Language-Guided Multi-Source Domain Adaptation
Zhenbin Wang
Lei Zhang
Lituan Wang
Minjuan Zhu
40
10
0
25 Jan 2024
Continual Invariant Risk Minimization
Continual Invariant Risk Minimization
Francesco Alesiani
Shujian Yu
Mathias Niepert
OOD
31
1
0
21 Oct 2023
Semantic Image Segmentation: Two Decades of Research
Semantic Image Segmentation: Two Decades of Research
G. Csurka
Riccardo Volpi
Boris Chidlovskii
3DV
37
50
0
13 Feb 2023
Union-set Multi-source Model Adaptation for Semantic Segmentation
Union-set Multi-source Model Adaptation for Semantic Segmentation
Zongyao Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
21
4
0
06 Dec 2022
Gated Domain Units for Multi-source Domain Generalization
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
45
4
0
24 Jun 2022
(Im)possibility of Collective Intelligence
(Im)possibility of Collective Intelligence
Krikamol Muandet
37
6
0
05 Jun 2022
SPD domain-specific batch normalization to crack interpretable
  unsupervised domain adaptation in EEG
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
Reinmar J. Kobler
J. Hirayama
Qibin Zhao
M. Kawanabe
19
54
0
02 Jun 2022
Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain
Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain
Chuan-Xian Ren
Yong-Jin Liu
Xiwen Zhang
Ke-Kun Huang
AAML
OOD
21
91
0
22 Feb 2022
Unsupervised Domain Adaptation for Semantic Image Segmentation: a
  Comprehensive Survey
Unsupervised Domain Adaptation for Semantic Image Segmentation: a Comprehensive Survey
G. Csurka
Riccardo Volpi
Boris Chidlovskii
OOD
VLM
3DV
70
40
0
06 Dec 2021
Anomaly Detection in IR Images of PV Modules using Supervised
  Contrastive Learning
Anomaly Detection in IR Images of PV Modules using Supervised Contrastive Learning
Lukas Bommes
M. Hoffmann
C. Buerhop‐Lutz
Tobias Pickel
J. Hauch
Christoph J. Brabec
Andreas Maier
I. M. Peters
18
31
0
06 Dec 2021
Non-IID data and Continual Learning processes in Federated Learning: A
  long road ahead
Non-IID data and Continual Learning processes in Federated Learning: A long road ahead
Marcos F. Criado
F. Casado
R. Iglesias
Carlos V. Regueiro
S. Barro
FedML
38
77
0
26 Nov 2021
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP
  Tasks
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj
Tushar Vaidya
Soujanya Poria
OT
FedML
65
7
0
06 Oct 2021
Multi-source Few-shot Domain Adaptation
Multi-source Few-shot Domain Adaptation
Xiangyu Yue
Zangwei Zheng
Colorado Reed
Hari Prasanna Das
Kurt Keutzer
Alberto L. Sangiovanni-Vincentelli
35
12
0
25 Sep 2021
Online Adaptation to Label Distribution Shift
Online Adaptation to Label Distribution Shift
Ruihan Wu
Chuan Guo
Yi-Hsun Su
Kilian Q. Weinberger
21
47
0
09 Jul 2021
f-Domain-Adversarial Learning: Theory and Algorithms
f-Domain-Adversarial Learning: Theory and Algorithms
David Acuna
Guojun Zhang
M. Law
Sanja Fidler
FedML
AI4CE
21
60
0
21 Jun 2021
Aggregating From Multiple Target-Shifted Sources
Aggregating From Multiple Target-Shifted Sources
Changjian Shui
Zijian Li
Jiaqi Li
Christian Gagné
Charles Ling
Boyu Wang
41
29
0
09 May 2021
Information-theoretic regularization for Multi-source Domain Adaptation
Information-theoretic regularization for Multi-source Domain Adaptation
Geon Yeong Park
Sang Wan Lee
TTA
27
25
0
04 Apr 2021
Your Classifier can Secretly Suffice Multi-Source Domain Adaptation
Your Classifier can Secretly Suffice Multi-Source Domain Adaptation
Naveen Venkat
Jogendra Nath Kundu
D. K. Singh
Ambareesh Revanur
R. VenkateshBabu
27
69
0
20 Mar 2021
mDALU: Multi-Source Domain Adaptation and Label Unification with Partial
  Datasets
mDALU: Multi-Source Domain Adaptation and Label Unification with Partial Datasets
R. Gong
Dengxin Dai
Yuhua Chen
Wen Li
Luc Van Gool
24
22
0
15 Dec 2020
Learning Synthetic to Real Transfer for Localization and Navigational
  Tasks
Learning Synthetic to Real Transfer for Localization and Navigational Tasks
Maxime Pietrantoni
Boris Chidlovskii
T. Silander
22
0
0
20 Nov 2020
Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
  Multiple Sources
Curriculum CycleGAN for Textual Sentiment Domain Adaptation with Multiple Sources
Sicheng Zhao
Yang Xiao
Jiang Guo
Xiangyu Yue
Jufeng Yang
Ravi Krishna
Pengfei Xu
Kurt Keutzer
27
17
0
17 Nov 2020
Universal Multi-Source Domain Adaptation
Universal Multi-Source Domain Adaptation
Yueming Yin
Zhen Yang
Haifeng Hu
Xiaofu Wu
22
1
0
05 Nov 2020
Transfer Meta-Learning: Information-Theoretic Bounds and Information
  Meta-Risk Minimization
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization
Sharu Theresa Jose
Osvaldo Simeone
G. Durisi
29
17
0
04 Nov 2020
Domain adaptation under structural causal models
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
39
39
0
29 Oct 2020
Tackling unsupervised multi-source domain adaptation with optimism and
  consistency
Tackling unsupervised multi-source domain adaptation with optimism and consistency
Diogo Pernes
Jaime S. Cardoso
31
8
0
29 Sep 2020
A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
Sicheng Zhao
Xiangyu Yue
Shanghang Zhang
Bo-wen Li
Han Zhao
...
Ravi Krishna
Joseph E. Gonzalez
Alberto L. Sangiovanni-Vincentelli
S. Seshia
Kurt Keutzer
44
264
0
01 Sep 2020
Beyond $\mathcal{H}$-Divergence: Domain Adaptation Theory With
  Jensen-Shannon Divergence
Beyond H\mathcal{H}H-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
38
22
0
30 Jul 2020
A Theory of Multiple-Source Adaptation with Limited Target Labeled Data
A Theory of Multiple-Source Adaptation with Limited Target Labeled Data
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
Ke Wu
54
28
0
19 Jul 2020
Learning to Combine: Knowledge Aggregation for Multi-Source Domain
  Adaptation
Learning to Combine: Knowledge Aggregation for Multi-Source Domain Adaptation
Hang Wang
Minghao Xu
Bingbing Ni
Wenjun Zhang
13
105
0
17 Jul 2020
Multi-source Domain Adaptation via Weighted Joint Distributions Optimal
  Transport
Multi-source Domain Adaptation via Weighted Joint Distributions Optimal Transport
Rosanna Turrisi
Rémi Flamary
A. Rakotomamonjy
Massimiliano Pontil
OT
21
31
0
23 Jun 2020
Feature Alignment and Restoration for Domain Generalization and
  Adaptation
Feature Alignment and Restoration for Domain Generalization and Adaptation
Xin Jin
Cuiling Lan
Wenjun Zeng
Zhibo Chen
OOD
40
39
0
22 Jun 2020
Risk Variance Penalization
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
53
33
0
13 Jun 2020
A survey on domain adaptation theory: learning bounds and theoretical
  guarantees
A survey on domain adaptation theory: learning bounds and theoretical guarantees
I. Redko
Emilie Morvant
Amaury Habrard
M. Sebban
Younès Bennani
OOD
17
133
0
24 Apr 2020
Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
  Survey
Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey
Sicheng Zhao
Bo-wen Li
Colorado Reed
Pengfei Xu
Kurt Keutzer
26
103
0
26 Feb 2020
MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
  Adaptation
MADAN: Multi-source Adversarial Domain Aggregation Network for Domain Adaptation
Sicheng Zhao
Bo-wen Li
Xiangyu Yue
Pengfei Xu
Kurt Keutzer
OOD
46
64
0
19 Feb 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
33
244
0
11 Feb 2020
Model Reuse with Reduced Kernel Mean Embedding Specification
Model Reuse with Reduced Kernel Mean Embedding Specification
Xi-Zhu Wu
Wen-qi Xu
Song Liu
Zhi-Hua Zhou
28
25
0
20 Jan 2020
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
  Domain Adaptation: ABIDE Results
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results
Xiaoxiao Li
Yufeng Gu
Nicha Dvornek
Lawrence H. Staib
P. Ventola
James S. Duncan
FedML
OOD
18
353
0
16 Jan 2020
Generalizing to unseen domains via distribution matching
Generalizing to unseen domains via distribution matching
Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
T. Falk
Ioannis Mitliagkas
OOD
35
155
0
03 Nov 2019
Test-Time Training with Self-Supervision for Generalization under
  Distribution Shifts
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Moment Matching for Multi-Source Domain Adaptation
Moment Matching for Multi-Source Domain Adaptation
Xingchao Peng
Qinxun Bai
Xide Xia
Zijun Huang
Kate Saenko
Bo Wang
OOD
74
1,754
0
04 Dec 2018
PAC-Bayes and Domain Adaptation
PAC-Bayes and Domain Adaptation
Pascal Germain
Amaury Habrard
Franccois Laviolette
Emilie Morvant
33
24
0
17 Jul 2017
Domain Adaptation: Learning Bounds and Algorithms
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
793
0
19 Feb 2009
1