ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08986
  4. Cited By
Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs

Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs

23 May 2018
Nico Engel
S. Hörmann
Philipp Henzler
Klaus C. J. Dietmayer
ArXivPDFHTML

Papers citing "Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs"

4 / 4 papers shown
Title
Unsupervised 4D LiDAR Moving Object Segmentation in Stationary Settings
  with Multivariate Occupancy Time Series
Unsupervised 4D LiDAR Moving Object Segmentation in Stationary Settings with Multivariate Occupancy Time Series
T. Kreutz
M. Mühlhäuser
Alejandro Sánchez Guinea
39
13
0
30 Dec 2022
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with
  Real-Time Application
A Random Finite Set Approach for Dynamic Occupancy Grid Maps with Real-Time Application
Dominik Nuss
Stephan Reuter
Markus Thom
Ting Yuan
Gunther Krehl
M. Maile
Axel Gern
Klaus C. J. Dietmayer
59
137
0
09 May 2016
First Step toward Model-Free, Anonymous Object Tracking with Recurrent
  Neural Networks
First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks
Quan Gan
Qipeng Guo
Zheng-Wei Zhang
Kyunghyun Cho
VOT
18
51
0
19 Nov 2015
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
195
7,816
0
13 Jun 2015
1