Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.10265
Cited By
v1
v2 (latest)
Training verified learners with learned verifiers
25 May 2018
Krishnamurthy Dvijotham
Sven Gowal
Robert Stanforth
Relja Arandjelović
Brendan O'Donoghue
J. Uesato
Pushmeet Kohli
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Training verified learners with learned verifiers"
20 / 70 papers shown
Title
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
113
109
0
19 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
75
14
0
17 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
105
350
0
14 Jun 2019
Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers
Guang-He Lee
Yang Yuan
Shiyu Chang
Tommi Jaakkola
AAML
70
126
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
105
552
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
82
62
0
08 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
93
101
0
08 Jun 2019
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
99
69
0
06 Apr 2019
A Provable Defense for Deep Residual Networks
M. Mirman
Gagandeep Singh
Martin Vechev
74
26
0
29 Mar 2019
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
68
44
0
25 Feb 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
142
271
0
23 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
190
2,055
0
08 Feb 2019
Strong mixed-integer programming formulations for trained neural networks
Ross Anderson
Joey Huchette
Christian Tjandraatmadja
J. Vielma
187
259
0
20 Nov 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
124
420
0
19 Nov 2018
Semidefinite relaxations for certifying robustness to adversarial examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
111
439
0
02 Nov 2018
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
107
559
0
30 Oct 2018
Efficient Formal Safety Analysis of Neural Networks
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
78
406
0
19 Sep 2018
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao
Vincent Tjeng
Nur Muhammad (Mahi) Shafiullah
Aleksander Madry
AAML
OOD
59
202
0
09 Sep 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
114
1,786
0
30 May 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
129
939
0
09 Feb 2018
Previous
1
2