Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1806.01246
Cited By
v1
v2 (latest)
ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
4 June 2018
A. Salem
Yang Zhang
Mathias Humbert
Pascal Berrang
Mario Fritz
Michael Backes
MIACV
MIALM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models"
50 / 519 papers shown
Sharing Models or Coresets: A Study based on Membership Inference Attack
Hanlin Lu
Wei-Han Lee
T. He
Maroun Touma
Kevin S. Chan
MIACV
FedML
159
18
0
06 Jul 2020
Reducing Risk of Model Inversion Using Privacy-Guided Training
Abigail Goldsteen
Gilad Ezov
Ariel Farkash
148
5
0
29 Jun 2020
On the Effectiveness of Regularization Against Membership Inference Attacks
Yigitcan Kaya
Sanghyun Hong
Tudor Dumitras
179
31
0
09 Jun 2020
Sponge Examples: Energy-Latency Attacks on Neural Networks
Ilia Shumailov
Yiren Zhao
Daniel Bates
Nicolas Papernot
Robert D. Mullins
Ross J. Anderson
SILM
241
157
0
05 Jun 2020
BadNL: Backdoor Attacks against NLP Models with Semantic-preserving Improvements
Asia-Pacific Computer Systems Architecture Conference (ACSA), 2020
Xiaoyi Chen
A. Salem
Dingfan Chen
Michael Backes
Shiqing Ma
Qingni Shen
Zhonghai Wu
Yang Zhang
SILM
236
300
0
01 Jun 2020
On the Difficulty of Membership Inference Attacks
Shahbaz Rezaei
Xin Liu
MIACV
168
15
0
27 May 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
238
160
0
21 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
163
98
0
18 May 2020
DAMIA: Leveraging Domain Adaptation as a Defense against Membership Inference Attacks
Hongwei Huang
Weiqi Luo
Guoqiang Zeng
J. Weng
Yue Zhang
Anjia Yang
AAML
163
26
0
16 May 2020
Defending Model Inversion and Membership Inference Attacks via Prediction Purification
Ziqi Yang
Bin Shao
Bohan Xuan
E. Chang
Fan Zhang
AAML
146
79
0
08 May 2020
When Machine Unlearning Jeopardizes Privacy
Conference on Computer and Communications Security (CCS), 2020
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
291
288
0
05 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
ACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Xinjian Luo
Xiangqi Zhu
FedML
659
30
0
27 Apr 2020
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
441
148
0
25 Apr 2020
DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments
ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services (MobiSys), 2020
Fan Mo
Ali Shahin Shamsabadi
Kleomenis Katevas
Soteris Demetriou
Ilias Leontiadis
Andrea Cavallaro
Hamed Haddadi
FedML
164
214
0
12 Apr 2020
Information Leakage in Embedding Models
Conference on Computer and Communications Security (CCS), 2020
Congzheng Song
A. Raghunathan
MIACV
437
321
0
31 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020
Yang Liu
Zhuo Ma
Ximeng Liu
Jian Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
220
80
0
24 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
USENIX Security Symposium (USENIX Security), 2020
Liwei Song
Prateek Mittal
MIACV
684
456
0
24 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
European Symposium on Security and Privacy (EuroS&P), 2020
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
329
306
0
07 Mar 2020
Membership Inference Attacks and Defenses in Classification Models
Jiacheng Li
Ninghui Li
Bruno Ribeiro
171
39
0
27 Feb 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
207
150
0
26 Feb 2020
Approximate Data Deletion from Machine Learning Models
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Zachary Izzo
Mary Anne Smart
Kamalika Chaudhuri
James Zou
MU
258
316
0
24 Feb 2020
Optimizing Privacy-Preserving Outsourced Convolutional Neural Network Predictions
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020
Minghui Li
Sherman S. M. Chow
Shengshan Hu
Yuejing Yan
Minxin Du
Peng Kuang
288
53
0
22 Feb 2020
Data and Model Dependencies of Membership Inference Attack
Shakila Mahjabin Tonni
Dinusha Vatsalan
F. Farokhi
Dali Kaafar
Zhigang Lu
Gioacchino Tangari
324
23
0
17 Feb 2020
Modelling and Quantifying Membership Information Leakage in Machine Learning
F. Farokhi
M. Kâafar
AAML
FedML
MIACV
223
26
0
29 Jan 2020
Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack
Bo Zhang
Ruotong Yu
Haipei Sun
Yanying Li
Jun Xu
Wendy Hui Wang
AAML
129
14
0
24 Jan 2020
On the Resilience of Biometric Authentication Systems against Random Inputs
Network and Distributed System Security Symposium (NDSS), 2020
Benjamin Zi Hao Zhao
Hassan Jameel Asghar
M. Kâafar
AAML
267
26
0
13 Jan 2020
Membership Inference Attacks Against Object Detection Models
Yeachan Park
Myung-joo Kang
MIACV
96
6
0
12 Jan 2020
Privacy Attacks on Network Embeddings
Michael Ellers
Michael Cochez
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
AAML
169
14
0
23 Dec 2019
Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation
European Conference on Computer Vision (ECCV), 2019
Yang He
Shadi Rahimian
Bernt Schiele
Mario Fritz
MIACV
171
57
0
20 Dec 2019
Analyzing Information Leakage of Updates to Natural Language Models
Conference on Computer and Communications Security (CCS), 2019
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
Victor Rühle
Andrew Paverd
O. Ohrimenko
Boris Köpf
Marc Brockschmidt
ELM
MIACV
FedML
PILM
KELM
377
135
0
17 Dec 2019
Towards Security Threats of Deep Learning Systems: A Survey
Yingzhe He
Guozhu Meng
Kai Chen
Xingbo Hu
Jinwen He
AAML
ELM
247
15
0
28 Nov 2019
Survey of Attacks and Defenses on Edge-Deployed Neural Networks
IEEE Conference on High Performance Extreme Computing (HPEC), 2019
Mihailo Isakov
V. Gadepally
K. Gettings
Michel A. Kinsy
AAML
133
32
0
27 Nov 2019
Effects of Differential Privacy and Data Skewness on Membership Inference Vulnerability
International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (ICPSISA), 2019
Stacey Truex
Ling Liu
Mehmet Emre Gursoy
Wenqi Wei
Lei Yu
MIACV
154
56
0
21 Nov 2019
Privacy Leakage Avoidance with Switching Ensembles
IEEE Military Communications Conference (MILCOM), 2019
R. Izmailov
Peter Lin
Chris Mesterharm
S. Basu
139
2
0
18 Nov 2019
Revocable Federated Learning: A Benchmark of Federated Forest
Yang Liu
Zhuo Ma
Ximeng Liu
Zhuzhu Wang
Siqi Ma
Ken Ren
FedML
MU
159
11
0
08 Nov 2019
Reducing audio membership inference attack accuracy to chance: 4 defenses
M. Lomnitz
Nina Lopatina
Paul Gamble
Z. Hampel-Arias
Lucas Tindall
Felipe A. Mejia
M. Barrios
AAML
105
0
0
31 Oct 2019
Quantifying (Hyper) Parameter Leakage in Machine Learning
IEEE International Conference on Multimedia Big Data (ICMBD), 2019
Vasisht Duddu
D. V. Rao
AAML
MIACV
FedML
137
5
0
31 Oct 2019
Fault Tolerance of Neural Networks in Adversarial Settings
Journal of Intelligent & Fuzzy Systems (JIFS), 2019
Vasisht Duddu
N. Pillai
D. V. Rao
V. Balas
SILM
AAML
186
12
0
30 Oct 2019
Robust Membership Encoding: Inference Attacks and Copyright Protection for Deep Learning
Congzheng Song
Reza Shokri
MIACV
94
5
0
27 Sep 2019
Alleviating Privacy Attacks via Causal Learning
International Conference on Machine Learning (ICML), 2019
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
221
32
0
27 Sep 2019
MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples
Conference on Computer and Communications Security (CCS), 2019
Jinyuan Jia
Ahmed Salem
Michael Backes
Yang Zhang
Neil Zhenqiang Gong
359
438
0
23 Sep 2019
Defending against Machine Learning based Inference Attacks via Adversarial Examples: Opportunities and Challenges
Jinyuan Jia
Neil Zhenqiang Gong
AAML
SILM
167
20
0
17 Sep 2019
GAN-Leaks: A Taxonomy of Membership Inference Attacks against Generative Models
Dingfan Chen
Ning Yu
Yang Zhang
Mario Fritz
198
52
0
09 Sep 2019
High Accuracy and High Fidelity Extraction of Neural Networks
USENIX Security Symposium (USENIX Security), 2019
Matthew Jagielski
Nicholas Carlini
David Berthelot
Alexey Kurakin
Nicolas Papernot
MLAU
MIACV
338
425
0
03 Sep 2019
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference
International Conference on Machine Learning (ICML), 2019
Alexandre Sablayrolles
Matthijs Douze
Yann Ollivier
Cordelia Schmid
Edouard Grave
MIACV
197
420
0
29 Aug 2019
On Inferring Training Data Attributes in Machine Learning Models
Benjamin Zi Hao Zhao
Hassan Jameel Asghar
Raghav Bhaskar
M. Kâafar
TDI
MIACV
129
12
0
28 Aug 2019
Stolen Memories: Leveraging Model Memorization for Calibrated White-Box Membership Inference
USENIX Security Symposium (USENIX Security), 2019
Klas Leino
Matt Fredrikson
MIACV
304
307
0
27 Jun 2019
Adversarial training approach for local data debiasing
Ulrich Aïvodji
F. Bidet
Sébastien Gambs
Rosin Claude Ngueveu
Alain Tapp
189
10
0
19 Jun 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
168
12
0
15 Jun 2019
Robust or Private? Adversarial Training Makes Models More Vulnerable to Privacy Attacks
Felipe A. Mejia
Paul Gamble
Z. Hampel-Arias
M. Lomnitz
Nina Lopatina
Lucas Tindall
M. Barrios
SILM
144
21
0
15 Jun 2019
Previous
1
2
3
...
10
11
9
Next