Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.02450
Cited By
A Finite Time Analysis of Temporal Difference Learning With Linear Function Approximation
6 June 2018
Jalaj Bhandari
Daniel Russo
Raghav Singal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Finite Time Analysis of Temporal Difference Learning With Linear Function Approximation"
50 / 223 papers shown
Title
Bi-Level Policy Optimization with Nyström Hypergradients
Arjun Prakash
Naicheng He
Denizalp Goktas
Amy Greenwald
4
0
0
16 May 2025
KETCHUP: K-Step Return Estimation for Sequential Knowledge Distillation
Jiabin Fan
Guoqing Luo
Michael Bowling
Lili Mou
OffRL
68
0
0
26 Apr 2025
Achieving Tighter Finite-Time Rates for Heterogeneous Federated Stochastic Approximation under Markovian Sampling
Feng Zhu
Aritra Mitra
Robert W. Heath
FedML
36
0
0
15 Apr 2025
Stochastic Semi-Gradient Descent for Learning Mean Field Games with Population-Aware Function Approximation
Chenyu Zhang
Xu Chen
Xuan Di
87
4
0
17 Feb 2025
The surprising efficiency of temporal difference learning for rare event prediction
Xiaoou Cheng
Jonathan Weare
OffRL
43
0
0
17 Jan 2025
Solving Finite-Horizon MDPs via Low-Rank Tensors
Sergio Rozada
Jose Luis Orejuela
Antonio G. Marques
44
0
0
17 Jan 2025
Digital Twin Calibration with Model-Based Reinforcement Learning
Hua Zheng
Wei Xie
I. Ryzhov
Keilung Choy
39
0
0
04 Jan 2025
On the Linear Speedup of Personalized Federated Reinforcement Learning with Shared Representations
Guojun Xiong
Shufan Wang
Daniel Jiang
Jian Li
FedML
78
1
0
22 Nov 2024
Single-Timescale Multi-Sequence Stochastic Approximation Without Fixed Point Smoothness: Theories and Applications
Yue Huang
Zhaoxian Wu
Shiqian Ma
Qing Ling
39
1
0
17 Oct 2024
Two-Timescale Linear Stochastic Approximation: Constant Stepsizes Go a Long Way
Jeongyeol Kwon
Luke Dotson
Yudong Chen
Qiaomin Xie
36
1
0
16 Oct 2024
On the Hardness of Decentralized Multi-Agent Policy Evaluation under Byzantine Attacks
Hairi
Minghong Fang
Zifan Zhang
Alvaro Velasquez
Jia Liu
AAML
26
1
0
19 Sep 2024
On the Convergence Rates of Federated Q-Learning across Heterogeneous Environments
Muxing Wang
Pengkun Yang
Lili Su
FedML
31
1
0
05 Sep 2024
Robust Q-Learning under Corrupted Rewards
Sreejeet Maity
Aritra Mitra
AAML
35
0
0
05 Sep 2024
Finite-Time Analysis of Asynchronous Multi-Agent TD Learning
Nicolò Dal Fabbro
Arman Adibi
Aritra Mitra
George J. Pappas
42
1
0
29 Jul 2024
Deflated Dynamics Value Iteration
Jongmin Lee
Amin Rakhsha
Ernest K. Ryu
Amir-massoud Farahmand
46
2
0
15 Jul 2024
On Bellman equations for continuous-time policy evaluation I: discretization and approximation
Wenlong Mou
Yuhua Zhu
OffRL
40
2
0
08 Jul 2024
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
62
16
0
05 Jul 2024
Learning the Target Network in Function Space
Kavosh Asadi
Yao Liu
Shoham Sabach
Ming Yin
Rasool Fakoor
43
0
0
03 Jun 2024
Revisiting Step-Size Assumptions in Stochastic Approximation
Caio Kalil Lauand
Sean P. Meyn
39
1
0
28 May 2024
A CMDP-within-online framework for Meta-Safe Reinforcement Learning
Vanshaj Khattar
Yuhao Ding
Bilgehan Sel
Javad Lavaei
Ming Jin
OffRL
32
12
0
26 May 2024
Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning
Shangding Gu
Bilgehan Sel
Yuhao Ding
Lu Wang
Qingwei Lin
Alois Knoll
Ming Jin
42
1
0
26 May 2024
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
33
4
0
26 May 2024
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
Shuai Zhang
Heshan Devaka Fernando
Miao Liu
K. Murugesan
Songtao Lu
Pin-Yu Chen
Tianyi Chen
Meng Wang
54
1
0
24 May 2024
An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks
Zhifa Ke
Zaiwen Wen
Junyu Zhang
37
0
0
07 May 2024
A Single Online Agent Can Efficiently Learn Mean Field Games
Chenyu Zhang
Xu Chen
Xuan Di
OffRL
47
2
0
05 May 2024
An MRP Formulation for Supervised Learning: Generalized Temporal Difference Learning Models
Yangchen Pan
Junfeng Wen
Chenjun Xiao
Philip Torr
OffRL
MU
29
0
0
23 Apr 2024
EMC
2
^2
2
: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence
Chung-Yiu Yau
Hoi-To Wai
Parameswaran Raman
Soumajyoti Sarkar
Mingyi Hong
39
1
0
16 Apr 2024
Compressed Federated Reinforcement Learning with a Generative Model
Ali Beikmohammadi
Sarit Khirirat
Sindri Magnússon
FedML
39
2
0
26 Mar 2024
DASA: Delay-Adaptive Multi-Agent Stochastic Approximation
Nicolò Dal Fabbro
Arman Adibi
H. Vincent Poor
Sanjeev R. Kulkarni
A. Mitra
George J. Pappas
39
2
0
25 Mar 2024
Sample and Communication Efficient Fully Decentralized MARL Policy Evaluation via a New Approach: Local TD update
Fnu Hairi
Zifan Zhang
Jia-Wei Liu
20
2
0
23 Mar 2024
One-Shot Averaging for Distributed TD(
λ
λ
λ
) Under Markov Sampling
Haoxing Tian
I. Paschalidis
Alexander Olshevsky
OffRL
47
4
0
13 Mar 2024
Distributionally Robust Off-Dynamics Reinforcement Learning: Provable Efficiency with Linear Function Approximation
Zhishuai Liu
Pan Xu
OOD
OffRL
42
8
0
23 Feb 2024
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling
Arman Adibi
Nicolò Dal Fabbro
Luca Schenato
Sanjeev R. Kulkarni
H. Vincent Poor
George J. Pappas
Hamed Hassani
A. Mitra
35
8
0
19 Feb 2024
SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
Paul Mangold
S. Samsonov
Safwan Labbi
I. Levin
Réda Alami
Alexey Naumov
Eric Moulines
38
1
0
06 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
45
1
0
05 Feb 2024
Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing Systems
Neharika Jali
Guannan Qu
Weina Wang
Gauri Joshi
29
5
0
02 Feb 2024
Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning
Chenyu Zhang
Han Wang
Aritra Mitra
James Anderson
37
18
0
27 Jan 2024
Regularized Q-Learning with Linear Function Approximation
Jiachen Xi
Alfredo Garcia
P. Momcilovic
38
2
0
26 Jan 2024
Constant Stepsize Q-learning: Distributional Convergence, Bias and Extrapolation
Yixuan Zhang
Qiaomin Xie
35
4
0
25 Jan 2024
Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving
O
(
1
/
k
)
O(1/k)
O
(
1/
k
)
Finite-Sample Complexity
Thinh T. Doan
32
7
0
23 Jan 2024
Stochastic optimization with arbitrary recurrent data sampling
William G. Powell
Hanbaek Lyu
37
0
0
15 Jan 2024
Tight Finite Time Bounds of Two-Time-Scale Linear Stochastic Approximation with Markovian Noise
Shaan ul Haque
S. Khodadadian
S. T. Maguluri
44
11
0
31 Dec 2023
Prediction and Control in Continual Reinforcement Learning
N. Anand
Doina Precup
OffRL
CLL
32
11
0
18 Dec 2023
Effectiveness of Constant Stepsize in Markovian LSA and Statistical Inference
D. Huo
Yudong Chen
Qiaomin Xie
34
4
0
18 Dec 2023
A Concentration Bound for TD(0) with Function Approximation
Siddharth Chandak
Vivek Borkar
31
0
0
16 Dec 2023
On the Performance of Temporal Difference Learning With Neural Networks
Haoxing Tian
I. Paschalidis
Alexander Olshevsky
24
5
0
08 Dec 2023
Finite-Time Analysis of Three-Timescale Constrained Actor-Critic and Constrained Natural Actor-Critic Algorithms
Prashansa Panda
Shalabh Bhatnagar
41
0
0
25 Oct 2023
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with
ε
ε
ε
-Greedy Exploration
Shuai Zhang
Hongkang Li
Meng Wang
Miao Liu
Pin-Yu Chen
Songtao Lu
Sijia Liu
K. Murugesan
Subhajit Chaudhury
40
19
0
24 Oct 2023
Finite-Time Analysis of Whittle Index based Q-Learning for Restless Multi-Armed Bandits with Neural Network Function Approximation
Guojun Xiong
Jian Li
35
13
0
03 Oct 2023
A primal-dual perspective for distributed TD-learning
Han-Dong Lim
Donghwan Lee
25
1
0
01 Oct 2023
1
2
3
4
5
Next